<table>
<thead>
<tr>
<th>Title</th>
<th>ハクサイ (Brassica rapa subsp. pekinensis) の半数体育種に関する研究</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>佐藤 正紀</td>
</tr>
<tr>
<td>Editor(s)</td>
<td></td>
</tr>
<tr>
<td>Citation</td>
<td>大阪府立大学 博士論文</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2009</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10466/6470</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
</tbody>
</table>

http://repository.osakafu-u.ac.jp/dspace/
大阪府立大学博士(応用生命科学)学位論文

ハクサイ(Brassica rapa subsp. pekinensis)の
半数体育種に関する研究

佐藤 正紀

2009年
目次

第1章 緒言 ... 3

第2章 薔および小胞子培養による倍加半数体の作出 14
 第1節 小胞子培養における不定胚形成率に対する材料蕾あるいは花序の
 低温前処理効果 .. 14
 第1項 共通の方法 15
 第2項 花序あるいは蕾の低温前処理の効果 19
 第3項 蕾の0, 3, 7, 10, 15および20日間の低温前処理の効果・・・ 20
 第4項 考察 .. 23
 第2節 蕾低温処理が小胞子の発達におよぼす影響 24
 第1項 共通の方法 24
 第2項 同一蕾中の6薔の中の小胞子の発達ステージ 25
 第3項 低温処理中の小胞子の発達 25
 第4項 考察 .. 28
 第3節 1個体の材料植物から得られる倍加半数体数の推定 29
 第1項 材料植物1個体からの小胞子培養 30
 第2項 考察 .. 31
 第4節 薔および小胞子培養由来の不定胚からの再分化植物の作出と
 倍数性的検討 ... 33
 第1項 共通の方法 34
 第2項 培養法が再分化植物の倍数性に与える影響 36
 第3項 品種・系統が小胞子培養由来の再分化植物の倍数性に与える
 影響 .. 37
 第4項 不定胚の倍数性調査による自然倍加の発生時期の推定 39
 第5項 考察 .. 41
第3章 優良倍加半数体系統の育成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・48
第1節 交配に利用するための成熟花粉の保存に関する検討 ・・・・・・・・・・・・48

第1項 in vitroでの花粉発芽法の検討 ・・・・・・・・・・・・・・・・・・・・・・49

1. 共通の材料および方法
2. 培地の pH の影響
3. 湿度前処理の in vitro花粉発芽への影響
4. 湿度前処理が花粉の形態に与える影響

第2項 花粉発芽率の品種・系統間差異

第2項 花粉の保存条件の検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・58

1. 花粉保存時の湿湿度の影響
2. 花粉保存時の温度の影響

第3項 長期保存花粉の受精能力と自家不和合性 ・・・・・・・・・・・・60

第4項 考察 ・・65

第2節 培および小胞子培養による優良倍加半数体系統の作出と
品種育成 ・・71

第1項 F1品種からの倍加半数体の作出と育種母本の育成 ・・・・・・・・71
第2項 園場選抜個体からの倍加半数体の育成 ・・・・・・・・・・・・・・・・76

第3項 考察 ・・78

第4章 総合考察 ・・・81

摘要 ・・88

Summary ・・・93

謝辞 ・・100

引用文献 ・・・101
第1章 緒言

ハクサイは，地中海沿岸を起源とし，中国に伝わって栽培され，品種が分化したと考えられている（水島と角田 1969）。現在では，主に中国，朝鮮半島および日本等の極東アジア地域で栽培されている。日本へは1866年（慶応2年）に初めて渡来したといわれ，本格的導入されたのは1875年（明治8年）で，その後，愛知県や宮城県で育種や採種が行われるようになり普及していった。そして，葉菜類の少ない冬期間の重要な野菜として生産量も伸び続けてきた。

現在では，ハクサイは最も身近で重要な野菜のひとつとして，鍋物，煮物，加工品（漬物，浅漬，キムチ）およびサラダ用として幅広く利用されている。作付面積は，野菜の中でダイコン，キャベツ，スイートコーン，タマネギ，ホウレンソウ，ネギ，レタスに次いで第8位，収穫量はダイコン，キャベツ，タマネギに次ぐ第4位（2002～2007年）である。しかし，近年の作付面積は減少傾向にあり（Table 1-1），2005年以降20,000 haを下回り，収穫量は2003年以降1,000,000 t以下で推移している。作付面積や収穫量の減少は，現代の食生活的多様化が原因の一つと考えられる。

ハクサイは，同一産地での周年栽培は成り立たないので，全国の北から南までの各産地で異なる作型で栽培されている。すなわちハクサイの周年供給は，収穫季節の違い，品種の早晚性，育苗や加温といった栽培技術の組み合わせによって成立している。しかし，市場への入荷状況は，11月から2月にピークが現れ，5月から8月は激減している（由比 1993）。これは，ハクサイの抽苔特性により高温期の栽培が困難であること，冬季の鍋物への利用といった消費者側の利用頻度や，浅漬けやキムチの業務・加工用に出荷されているといった市場動向によるものと考えられる。

ハクサイが日本に導入され，栽培が普及した当初は，その種子が遺伝的に雑駄
Table 1-1. Cultivation area and harvest amount per year of *Brassica rapa* subsp. *pekinensis* L. (Chinese cabbage) in Japan.

<table>
<thead>
<tr>
<th>Year</th>
<th>Cultivation area ($\times 10^3$ ha)</th>
<th>Harvest amount ($\times 10^3$ t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>23.7</td>
<td>989.9</td>
</tr>
<tr>
<td>1999</td>
<td>23.5</td>
<td>1,079.0</td>
</tr>
<tr>
<td>2000</td>
<td>22.7</td>
<td>1,036.0</td>
</tr>
<tr>
<td>2001</td>
<td>22.0</td>
<td>1,038.0</td>
</tr>
<tr>
<td>2002</td>
<td>21.4</td>
<td>1,005.0</td>
</tr>
<tr>
<td>2003</td>
<td>20.7</td>
<td>964.5</td>
</tr>
<tr>
<td>2004</td>
<td>20.2</td>
<td>887.6</td>
</tr>
<tr>
<td>2005</td>
<td>19.8</td>
<td>924.3</td>
</tr>
<tr>
<td>2006</td>
<td>19.3</td>
<td>942.3</td>
</tr>
<tr>
<td>2007</td>
<td>18.7</td>
<td>917.5</td>
</tr>
</tbody>
</table>

Extract from Agriculture·and·forestry fishery statistics information synthesis database.
であったので、結球しないものが多かった。したがって、いかにして種子の純度を高めて結球率の高い品種を育成するかが当初の育種目標であった。中国から導入した種子を対象にして、集団選抜、純系分離、母系淘汰に交配固定の手法も組み入れられ、現在の品種の育種素材となる多くの品種が育成された（渡辺 1989）。このようにして種子の実用的純度が向上し、栽培が安定して各地に産地が形成され市場出荷されるようになってからは、市場の意向を反映して結球形態、熟期、輸送性に着目した品種改良が行われるようになった。更に1930年代中頃からは、耐病性の付与が求められるようになり、軟腐病、ウイルス病の抵抗性育種が進められた。このように、ハクサイ栽培の普及、拡大とともに育種目標は細分化されて多岐にわたり、結球形態、生理・生態特性、作型、栽培適地、耐病性、生理障害耐性といった多数の形質について選抜され、育種が行われてきた。現在では、作型も多様化し、葉質の硬軟、耐暑性、耐寒性、貯蔵性、輸送性、利用適性（浅漬け用、煮物用、キムチ用）、収量、耐病性、といった多くの要望に応えるために、各苗会社で新品種の開発が続けられている。

営利栽培を行う上では耐病性は非常に重要な形質である。中でも土壌伝染性病害の根こぶ病は、世界的な重要病害の一つとして抵抗性品種の育成が求められている。根こぶ病は、ダイコン以外のアブラナ科植物に特異的に発生する病害であり、その病原菌は Plasmodiophora brassicae Wor.である。根にこぶが着生、肥大して、導水性が損なわれて枯死に至り収穫不能となる。日本でも1970年代初期に全国的な発生が認められ（吉川 1975）、産地で大きな被害をもたらした。PCNB剤を用いた土壌消毒による防止が行われていたが、連作による菌密度の増加によって考えられる防除効果の低下が問題が顕在化してきた。被害面積が増大する中で、根こぶ病抵抗性の品種育成が始まり、1982年に野菜・茶業試験場でヨーロッパの飼料用カブの根こぶ病抵抗性（CR: Clubroot Resistance）遺伝子を導入したハクサイの根こぶ病抵抗性系統が育成された（吉川 1993）。
その後、‘空海 65’(タキイ種苗(株)、京都)、‘ストロング CR75’((株)渡辺採種場、宮城)といった CR 品種が育成され、現在ではハクサイ、カブ、ツケナ、キャベツ、ブロッコリーで多数の CR 品種が市販されている。CR 品種は育成当初、高い抵抗性を示し、根で病が多発する圃場でも栽培が可能になった。しかし、1980年代後半には、根の病菌のレース分化が原因と考えられる CR 品種の罹病化が認められるようになった。同一の CR 品種でも栽培地域により罹病程度が異なるようになったので、様々な CR 品種の育成と栽培が試みられた。新 品種の育成には、CR 遺伝子の導入が必須となり、多数の CR 品種が育成販売されるに至った。
一方、消費者ニーズの観点からは、近年の健康志向による緑黄色野菜への関心が高まり、ハクサイでも球内色が黄色のものが好まれるようになってきた。更に量販店においては、1/2、1/4 といったカット包装した形態での販売が一般的になり、ハクサイの球内の外観形質も重要になった。また加工用（浅漬け）としても同様に、球内色が黄色であることが求められるようになった。こうしたことから、球内色が黄色の黄芯系ハクサイが現在の品種の主流となっている。

雑種強勢を利用した一代雑種育種法は、多くの他殖性作物種に適用され、現在では、野菜の販売品種のほとんどが一代雑種（F1）品種となっている。ハクサイを含むアブラナ科作物も同様にF1品種が主流である。自殖弱勢を示すアブラナ科作物では、実用的に支障のない程度に雑種性をもたらせて育成した固定種の品種が利用されたが、近年ではほとんどの品種がF1品種に替わっている。F1品種は固定種と比較して、雑種強勢による生産性の向上と生産物の斉一性が高いという長所がある。F1品種育成のためには、その両親となる遺伝的に固定した純系が必要で、純系の育成（固定化）には一般に 7〜8 世代、あるいはそれ以上の自殖が必要となる。例えば、2 つの育種素材のそれぞれから 2 つの目的形質を導入した新品種を育成する場合には、両者を交雑したF1の自殖後代の中から 2
一つの目的形質を併せもつものを選抜しながら世代を進めて固定度を高めていくことになる。この場合には、統系の育成には7～8年以上を要する。その後、試験交配によるF_1組合せ検定能力試験を行って有望なF_1組合せを選定し、産地適応性試験を通じて新品種に至る。つまり、このような交雑育種によるF_1品種の育成には10年以上の長い年月を要することになる。

一方、半数体植物は、コルヒチンを用いた薬剤処理により染色体を人為的に倍加すると、直ちにゲノム全体が遺伝的に同型接合の純系である倍加半数体(二倍体、2n)になる。すなわち、2つの育種素材の交雑F_1もしくはその後代の選抜植物から十分量の倍加半数体(純系、2n)を作成して目的形質をもつ純系を選抜すれば、短期間に異型接合個体を遺伝的に固定できるので、育種年限の大幅な短縮が可能になる。また、染色体セットを1組しか持たない半数体(n)は、遺伝解析や突然変異の選抜にも有効利用できる。

半数体は、半数性の細胞である減数分裂後の雌性あるいは雄性配偶子を再分化させて作出する。半数体を得るための主要な手法としては、雄性配偶子側からは薬培養と、未成熟な花粉である小胞子のみを単離して培養する小胞子培養があり、雌性配偶子側からは、未受精胚珠培養、放射線により不活化した花粉を交配した後に胚珠を培養する偽受精胚珠培養や、オオムギにおいて、過節種(Hordeum bulsum)の花粉を交配した後に胚珠を培養するバルボサッム法がある。これらのうち多くの作物種で成功例が報告されているのは薬培養である。

薬培養は、Guha and Maheshwari (1964, 1966)により初めて報告された。彼らは、チョウセンアサガオ(Datura innoxia)の薬培養を試み、小胞子の一部が細胞分裂を開始して不定胚に発達し、やがて半数体が得られることを報告した。続いて、タバコ(Nicotiana tabacum)とNicotiana sylvestrisの薬培養においても小胞子から不定胚を形成させて半数性の植物体を得、この増加によって異型接合体が得られることが確認された(Bourgin and Nitsch, 1967)。こ
うして、薬培養による小胞子からの半数体作出が確実なものとなり、多くの有用作物において薬培養に関する研究が行われるようになった。

さらに、薬培養から進展して薬の中の小胞子を単離して培養する小胞子培養技術が、タバコ（N. tabacum）と Nicoitiana rustica (Imamura et al. 1982)、西洋ナタネ（Brassica napus; Lichter 1982）、トウモロコシ（Zea mays; Coumans et al. 1989, Pescitelli et al. 1989）およびオオムギ（Hordeum vulgare; Hoekstra et al. 1993）で開発されている。

小胞子培養は、薬培養と比較して以下のような長所がある。(1)培養操作の簡易性：材料となる蕾のサイズが小さい場合（ハクサイでは長さ2～3 mm）、薬培養では、実体顕微鏡下でピンセットを用いて、蕾の中から薬のみを摘出す細かい操作が必要である。一方、小胞子培養では蕾を培養液中で押しつぶして小胞子を遊離させる。したがって、薬培養のような煩雑な操作を必要としないので、作業性と培養処理能力が格段に向上する。(2)薬壁の体細胞由来の組織から再分化植物が混入する危険性を排除できる。(3)薬組織内に、不定胚形成に対する阻害物質がある場合には、これを排除でき、また培地成分を直接作用させることが可能になる。(4)小胞子を直接培養するので観察が容易で、不定胚形成機構に関与する要因の研究に有効である。一方、小胞子培養には次ののような短所もある。(1)一般的に薬培養に比べて成功例が少ない。(2)薬壁に保護されているので、外的な環境要因の影響を直接受ける。したがって、単離操作や培養の環境条件に高い精度が要求される。(3)一度に大量の材料の培養が可能だが、コンタミネーションが生じた場合には、同一の培養集団の全てが無駄になる危険性がある。

アブラナ属（Brassica）植物においても、半数体作出に関して多くの研究が行われた。雌性配偶子からのアプローチとして、偽受精胚珠培養による半数体作出が
キャベツ（Brassica oleracea）で報告されている（Doré 1989）が、雄性配偶子からのアプローチである薬培養や小胞子培養に関する報告が大多数である。

一方、ハクサイでは、半数体作出に関する報告はナタネに比べて少ない。松本と長瀬（1984）は、ハクサイの薬培養による半数体作出について報告したが、その不定胚形成効率は非常に低かった。その後、Satoら（1989a）は、南方型の捲
心群の中に高い不定胚形成能をもつ品種があることを見出したが、不定胚からの植物体再分化の効率が低かった。さらに、佐藤ら(1989c)は、再分化条件の改良について報告した。また、Hamaokaらは、ハクサイの薬培養における不定胚形成過程の小胞子の分裂様式(1991a)および再分化植物の倍数性の簡易な識別方法(1991b)について報告している。

ハクサイの小胞子培養については、Satoら(1989b)が最初に報告し、その中で薬培養と同様に高い不定胚形成能力を持つ品種を見出したが、不定胚からの植物体再分化効率が低く、半数体の作出効率は低かった。その後、Kuginukiら(1997)は、不定胚形成率と不定胚からの植物体再分化率の両方に品種間差があることを報告している。

半数体育種は、Nakamuraら(1974)が、タバコで最初に薬培養により実用品種を育成し、同グループはその後も、5つの品種を育成した（石谷、神代1985）。その中の1品種である‘つくば1号’は現在でも関東地方を中心として栽培されている。コムギ（De Buyser and Henry1986）やイネ（藤田1987）およびオオムギ（Foroughi-Wehr and Friedt1982）でも半数体育種法による新品種・系統の育成が報告されている。中国でもイネおよびコムギの半数体育種が盛んに行われ、薬培養により多くの品種が育成・栽培されている（島田1991）。

アブラナ属（Brassica）植物においても、倍加半数体を利用した育種が盛んに行われており、西洋ナタネ（Charne and Beversdorf1988）やブロッコリー（Farnham et al.1998）、ハクサイ（湊ら1988）で品種育成の可能性が示された。

このように半数体育種法は、実用が可能で育種の固定操作の期間短縮の点では非常に優れた技術である。しかし、いくつかの大きな問題点があり、その普及を困難にしている。薬培養や小胞子培養の実用化を妨げている最大の要因は、小

このような、半数体育種法を実用化するためには、小胞子からの不定胚形成頻度を向上させることが最大の課題となる。西洋ナタネの場合、小胞子培養による不定胚形成は、不定胚形成能の高い品種・系統を材料にすること（Chuong et al. 1988）、培地組成の改良（Charne and Beversdorf 1988）、および培養に適した発達ステージの小胞子を含む蕾を正確に選定（Kott and Beversdorf 1988）することにより大幅に改善され、実用的な技術レベルに達していると思われる。しかし、ハクサイでは、西洋ナタネに比べて小胞子からの不定胚形成率が低いといった問題が残されている。不定胚が全く得られない品種が供試25品種中12品種であり（Kuginuki et al. 1997）という事実から、不定胚形成には著しい品種・系統間差が存在することも問題である。一部には不定胚形成率が高いハクサイ品種が見出されているものの、日本で主に栽培されている品種群とは生理的、形態的特性が大きく異なるので、品種育成に直接利用することはできない。ハクサイの薬培養を用いた新品種育成が報告された（湊ら 1988）中でも、不
定胚形成率は低く（薬当たりの不定胚形成率 0〜7％）育種方法のひとつとして一般的に利用できる段階にはまだ達していない。

本研究では、ハクサイの半数体育種法の効率化を目的として、1. 薬・小胞子培養を用いた倍加半数体作出効率の向上、2. 交配育種を行う上で必要となる成熟花粉の保存技術について検討、3. 倍加半数体を用いた半数体育種法の実用性を検証するため、目的の形質をもつ選抜系統から優良品種の育成を行った。育種目標は、根こぶ病抵抗性（CR）を有し球内色が既存品種よりも黄色が強く、鮮やかに拡がるという特性をもつ品種の育成である。倍加半数体作出の過程は、1) 小胞子からの不定胚形成、2) 不定胚からの再分化、3) 発根、4) 順化、5) 倍数性確認と倍加処理、および6) 自殖による採種と主要な6つの段階からなる。

本章（緒言）に続く第2章では、薬・小胞子培養による倍加半数体の作出について検討した。第1節では、小胞子培養における不定胚形成率に対する材料蕾あるいは花序の低温前処理の効果を検討し、第2節で蕾の低温処理中の蕾の中には含まれる小胞子の発達について調査することにより、低温処理の効果発現メカニズムを検討した。第3節では、品種育成途中の選抜個体から倍加半数体獲得を目指す場合を想定し、温室で栽培した1個体の材料植物から、獲得できる不定胚数を確認した。第4節では、薬・小胞子培養により得られる再分化植物体の倍数性を調査し、培養法や品種・系統によって自然倍加頻度が異なることを明らかにするとともに、自然倍加の発生時期を探った。

第3章では、優良倍加半数体系統の育成について検討した。第1節では半数体育種の実用場面での技術として、花粉の保存に関する検討を行った。これにより、開花期の異なる系統間の交配を可能にする技術であり、薬・小胞子培養によって得られる再分化植物の開花時期が個体ごとに非常に変動するので、これらの間で交配を試みる場合には必要な技術である。第1項では in vitro での花粉発
芽能を指標とする花粉の活性検定法を確立し、第2項ではこの検定法を用いて花粉の保存条件について検討した。また、第3項において保存花粉の受精能力と自家不和合性の保持について確認した。

そして第2節では、開発した半数体育種の実用化について検討するために、材料植物の選定から倍加半数体の作出と選抜、そして選抜された倍加半数体系統を用いた品種育成を試みた。第1項では市販F1品種を材料にした薬培養による倍加半数体の作出とF1新品種の育成を行い、第2項ではF1品種の自殖後代（F2）を栽培して目的形質をもつ個体を選抜し、この選抜個体を材料にした倍加半数体を作出してF1新品種を育成した。

最後に第4章において本研究の結果を科学性、実用性、将来性の面から総合的に考察した。
第2章 薬および小胞子培養による倍加半数体の作出

第1節 小胞子培養における不定胚形成率に対する材料蕾あるいは花序の

低温前処理効果

第1項 共通の方法

材料植物の栽培

播種約2週間後の実生を4℃の低温室に移し、連続照明下（白色蛍光灯、約20μmol m⁻² s⁻¹）で、約30日間の春化処理を行った。その後、1/2000ワグルネルポットに移植し、昼温23℃、夜温17℃の温室内で栽培した。抽台開花後の植物体から花序を順次採取して供試した。

小胞子培養

採取した花序から、幅1.5～2.0mmの蕾を集め、蕾内の薬長と花弁長の比が、0.5～0.7の蕾（Figure 2-1.）を選定した。これらの蕾の中にある小胞子の発達ステージは主に一細胞期後期であるが、材料植物の生育状態によって大きさの異なる栄養細胞と生殖細胞の2つからなる二細胞期前期の小胞子が含まれることもある（Figure 2-2.）。予備的な試験から、一細胞期後期のステージの小胞子が高い不定胚形成能を持つことを確認した。

小胞子培養はSatoら（1989c）の方法に若干の変更を加えて行った。培養に用いたすべての培地は、0.22μmメッシュの滅菌フィルターでろ過した。選定した蕾は0.1%塩化ベンザニルコウニウム（オスバン）液に30秒間浸漬後、1%サラシ粉溶液に15分間浸漬して表面殺菌し、その後、滅菌水で3回洗浄した。殺菌した蕾を、13％ショ糖を含み、L-グルタミン、L-セリンと植物成長調節物質を含まない修正B5培地（Keller and Armstrong 1979）に置床した。以下mB5·13培地（Table 2·1）と称し、滅菌シャーレ（径6cm、高さ1.5cm）に5mlずつ分注した。注射筒の内筒を用い、蕾をゆっくりと押しつぶして小胞子を遊離させた後、40μmのナイロンメッシュでろ過して残渣を除いた。小胞子懸濁液は、120g、3分間の遠心分離後、沈殿した小胞子をmB5·13培地に再懸濁して洗浄する操作を3回繰り返した。小胞子は、NLN·13培地（Lichter 1982；Table 2·1の
Figure 2.1. Flower buds of *Brassica rapa* subsp. *pekinensis* L. of which petal and anther length ratio (P/A) is about 0.5. Whole bud (top right), removed calyx (top left) and six anthers from the same bud (bottom).
Figure 2-2. Microspores of *Brassica rapa* subsp. *pekinensis* at a late unicellular stage (1CL, left) and a bicellular stage (2CU, right).
Table 2-1. Composition of culture media for microspore culture (mg/l).

<table>
<thead>
<tr>
<th>Component</th>
<th>mB5-13</th>
<th>NLN-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNO₃</td>
<td>2500</td>
<td>125</td>
</tr>
<tr>
<td>NaH₂PO₄·H₂O</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>250</td>
<td>125</td>
</tr>
<tr>
<td>CaCl₂·2H₂O</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>Ca(NO₃)₂·4H₂O</td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>MnSO₄·H₂O</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>ZnSO₄·7H₂O</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>CuSO₄·5H₂O</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>CoCl₂·6H₂O</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>KI</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>H₃BO₃</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>Na₂MoO₄·2H₂O</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>FeSO₄·7H₂O</td>
<td>27.8</td>
<td>27.85</td>
</tr>
<tr>
<td>Na₂·EDTA</td>
<td>37.3</td>
<td>37.25</td>
</tr>
<tr>
<td>Inositol</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Nicotinic acid</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Prydoxin·HCl</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Thiamine·HCl</td>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>Folic acid</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Glycine</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Biotin</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Glutamine</td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>Serine</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Glutathione</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Sucrose</td>
<td>130,000</td>
<td>130,000</td>
</tr>
<tr>
<td>6-benzyladenine (BA)</td>
<td></td>
<td>0.3</td>
</tr>
</tbody>
</table>

The medium was adjusted to pH 6.0 and sterilized by filtration.
NLN培地を基本としたものに、5×10⁴ / mlの密度になるように調整し、滅菌シャーレ（径6 cm、高さ1.5 cm）に2 mlずつ分注した。これを暗黒下33℃のインキュベーター内で24時間静置した（高温処理）後、25℃暗黒下で培養した。培養を開始してから約4週間後に不定胚の発生数を調査した。各処理区25蕾以上から小胞子を単離し、5シャーレに分けて培養し、それらの結果を平均値で示した。

低温前処理

花序の前処理：材料植物から採取した花序を長さ10 cm程度に切り揃え、蒸留水を約3 cmの深さに入れたビーカーに花茎を挿し、0、3もしくは10日間、4℃暗黒下に静置した。その後、花序から幅1.5〜2.0 mm、花弁長/薬長が0.5〜0.7の蕾を集めて小胞子培養に供試した。

蕾の前処理：材料植物から、幅1.5〜2.0 mm、花弁長/薬長が0.5〜0.7の蕾を集め、前述の通り表面殺菌後5 mlのmB5-13培地を含む滅菌シャーレに入れ、0、3、7、10、15もしくは20日間、4℃暗黒下に静置した。その後、小胞子培養に供試した。

第2項 花序あるいは蕾の低温前処理の効果

材料および方法

品種‘つばめ’((株)トーホク)を実験材料に供試し、花序あるいは蕾を0、3および10日間低温前処理後に小胞子培養を行い、不定胚形成を調査した。また、品種間による差異を調査するため、品種‘W1116’((株)渡辺採種場)、‘春さかり’((株)渡辺採種場)、‘CR・歓呼’((株)日本農林社)および‘春楽’((株)日本農林社)を実験材料とし、花序あるいは蕾を低温前処理した後に小胞子培養を行い、不定胚形成を調査した。
結果

品種‘つばめ’の花序と蕾の0日、3日および10日間の低温前処理の結果を示した(Table 2-2)。花序、蕾ともに低温前処理期間が長いほど、小胞子からの不定胚形成率が向上した。花序の10日間処理と蕾の3日間および10日間処理において、無処理区と有意な差が認められた。花序の処理よりも蕾の処理の方が低温前処理による不定胚形成率の向上効果は大きかった。低温前処理は、他の品種、‘W1116’、‘はるさかり’、‘CR歓呼’および‘春楽’でも不定胚形成に効果があることを確認した(データ省略)。

第3項 蕾の0, 3, 7, 10, 15および20日間の低温前処理の効果

材料および方法

品種‘つばめ’を供試し、花序あるいは蕾を0, 3, 7, 10, 15もしくは20日間低温前処理した後に小胞子培養を行い、不定胚形成を調査した。

結果

蕾の低温前処理の期間の長さの影響について調査した結果、7日間以上の低温前処理によって、不定胚形成率が向上した(Table 2-3)。低温前処理をしない場合に、不定胚形成率は実験ごとに大きく変動したが(Table 2-2, 3)、いずれの場合でも、低温前処理により不定胚形成率の向上効果が認められた。

以上の結果から、ハクサイの小胞子培養における、蕾あるいは花序の低温前処理は、いずれも不定胚形成率を向上させたが、その効果は蕾処理の方が大きく、複数の品種でも同様の効果が認められた。蕾処理では、7～20日間の前処理効果が最も大きかった。
Table 2-2. Effect of low temperature (4°C) pretreatment of buds or inflorescence on embryo formation in microspore culture of *B. rapa* subsp. *pekinensis* L. (Chinese cabbage) cv. 'Tsubame'

<table>
<thead>
<tr>
<th>Treated organ</th>
<th>Duration of 4°C pretreatment (days)</th>
<th>No. of embryos / petri dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>No treatment</td>
<td>0</td>
<td>2.0 a 1)</td>
</tr>
<tr>
<td>Inflorescence</td>
<td>3</td>
<td>3.2 a</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6.2 b</td>
</tr>
<tr>
<td>Bud</td>
<td>3</td>
<td>8.2 b</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>31.5 c</td>
</tr>
</tbody>
</table>

In each treatment, microspores were cultured in five petri dishes at a density of 5×10^5 / ml.

1) Values followed by the same letters are not significantly different at 5% level by multiple range test.
Table 2-3. Effect of duration of low temperature (4°C) pretreatment for flower buds on embryo formation in microspore culture of *B. rapa* subsp. *pekinensis* L. (Chinese cabbage) cv. 'Tsubame'

<table>
<thead>
<tr>
<th>Duration of 4°C pretreatment (days)</th>
<th>No. of embryo / petri dish</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.8 a(^1)</td>
</tr>
<tr>
<td>3</td>
<td>14.5 a</td>
</tr>
<tr>
<td>7</td>
<td>30.3 b</td>
</tr>
<tr>
<td>10</td>
<td>20.4 ab</td>
</tr>
<tr>
<td>15</td>
<td>37.5 c</td>
</tr>
<tr>
<td>20</td>
<td>32.5 c</td>
</tr>
</tbody>
</table>

\(^1\) Values followed by the same letters are not significantly different at 5% level by multiple range test.
第4項 考察

小胞子培養における不定胚形成率は、蕾の低温前処理を20日間まで延長しても高く保持された。これは、蕾を3週間程度、保存できることを示唆している。材料の保存は、小胞子培養を利用した半数体育種では極めて有用である。育種の実際場面において、培養に供試する材料植物は、同時期に一斉に抽苔開花してくる場合が多い。その一方で、小胞子培養を行う作業量と培養施設に制限があるので、同時にできる材料蕾の処理数は限定される。このような場合、材料の保存が可能であれば、作業の平準化が可能になり、培養作業の効率が向上することになる。このような観点からも、低温前処理は有用な技術と判断される。実際、後述する品種育成のための倍加半数体の作出過程において、この処理が日常
的に利用された。

第2節 原低温処理が小胞子の発達におよぼす影響

前節では、ハクサイ小胞子培養の供試蕾を、4℃の低温で3週間程度の保存することが可能ながら、不定胚形成率が向上することを明らかにした。各種のショック処理が小胞子の発達に及ぼす影響のひとつとして、高温処理は注目されている。ハクサイの薬培養（Hamaoka et al. 1991a）とナタネの小胞子培養（Fan et al. 1988, Simmonds et al. 1999）で報告されている。しかし、ハクサイでは、低温処理下で小胞子がどのように発達するかを報告した例はない。そこで本節では、低温処理が不定胚形成の向上効果をもたらすメカニズムを解明するために、低温処理中の小胞子の発達を組織学的に観察した。

第1項 共通の方法

材料

品種‘つばめ’を供試した。

小胞子の細胞学的観察

低温処理の小胞子の発達に及ぼす影響を調査するため、Fan ら（1988）と Hamaoka ら（1991a）の方法に従い、小胞子の発達ステージを観察した。低温処理を、0, 7, 9, 14, 22 または 29 日行った薬から薬を取り出し、固定液（エタノール：酢酸=3:1, v/v）に浸漬して固定後、56 mM クエン酸と 88 mM リン酸からなる緩衝液（pH4.4）に浸漬して平衡化した。この薬をスライドガラスの上に置き、4,6-diamino-2-phenylindol (DAPI) 溶液（同緩衝液中、0.25 mg/l）を 10 μl 滴下し、ピンセットを用いて薬を押しつぶして小胞子を遊離させた後、薬残渣を除き、カバーグラスをかけて落射蛍光顕微鏡（オリンパス BH-2, UV）で観察した。それぞれの薬について100以上の小胞子を観察した。
第2項 間一蕾中の6薬の中の小胞子の発達ステージ

方法

小胞子培養に用いる材料10蕾について、蕾内の薬長と花弁長の比が0.5～0.7の1つの蕾内の6薬に含まれる小胞子の発達ステージを調査した。

結果

1つの蕾内の6薬中に含まれる小胞子の発達ステージはすべて一細胞期後期で非常に良く同調していた（データ省略）。

第3項 低温処理中の小胞子の発達

方法

蕾を0, 7, 9, 14, 22および29日間処理した後の、蕾中の小胞子の発達ステージを観察した。

結果

蕾を0から29日間低温処理した後の、小胞子の各発達ステージを観察した(Table 2-4)。低温処理前の小胞子の発達ステージは、すべて一細胞期後期（1CL）の発達ステージであったが、7～29日間の低温処理期間中に1CLの小胞子の割合は減少し、小胞子第一分裂によって生じた、大きさの異なる生殖核と栄養核をもつ、二細胞期の小胞子（2CU）の割合が増加した。また、低温処理区において、わずかではあるが均等な大きさの、2つの核をもつ二細胞期の小胞子（2CE、Figure 2-3）が観察された。低温処理29日間では、生殖細胞がさらに分裂して、2つの生殖細胞と1つの栄養細胞からなる三細胞期の小胞子（3C；成熟花粉、Figure 2-3）も観察された。低温処理前後の花弁の長さと薬の長さの比（P/A）は、処理前が0.5～0.7であったのに対し、処理29日後には0.9～1.0に増大した。
Table 2-4. Percentage of developmental stage of microspores before and after low temperature pretreatment of buds in *B. rapa* subsp. *pekinensis* L. (Chinese cabbage) cv. ‘Tsubame’

<table>
<thead>
<tr>
<th>Duration of 4°C treatment (days)</th>
<th>Developmental stage of microspores (%)</th>
<th>1CL<sup>1)</sup></th>
<th>2CU<sup>2)</sup></th>
<th>2CE<sup>3)</sup></th>
<th>3C<sup>4)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.0 ± 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>86.9 ± 9.1</td>
<td>10.6 ± 7.0</td>
<td>2.5 ± 2.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>54.4 ± 22</td>
<td>44.5 ± 22.0</td>
<td>1.0 ± 0.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>59.1 ± 23.9</td>
<td>40.4 ± 23.6</td>
<td>0.5 ± 0.4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>63.8 ± 9.0</td>
<td>30.5 ± 8.2</td>
<td>5.7 ± 1.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>29.6 ± 4.1</td>
<td>56.3 ± 3.8</td>
<td>9.2 ± 0.6</td>
<td>4.9 ± 3.0</td>
<td></td>
</tr>
</tbody>
</table>

¹⁾ unicellular late stage microspore.
²⁾ bicellular stage microspore with two unequal size nuclei.
³⁾ bicellular stage microspore with two equal size nuclei.
⁴⁾ tricellular stage microspore with two generative cells and one vegetative cell.
Each value represents mean ± SE of 10 anthers.
Figure 2-3. Microspores of *Brassica rapa* subsp. *pekinensis* at a bicellular stage with two equal size nuclei (2CE, left) and a tricellular stage (3C, right).
第4項 考察

4℃の低温下において、蕾の中の小胞子は、不均等な大きさの核を持つ二細胞期（2CU）と均等な大きさの核を持つ二細胞期（2CE）の、2種類の異なる発達過程が観察された。アブラナ属（Brassica）植物では、一細胞期後期の小胞子は小胞子不均等サイズ二分裂をして、栄養細胞とこれより小さな生殖細胞からなる二細胞期の小胞子となる。生殖核は更に分裂して2つになり、三細胞期の成熟花粉になる。一方、小胞子からの不定胚形成では、一細胞期後期の小胞子は均等サイズ二分裂をし、同じ大小の2つの核からなる二細胞期の小胞子となり、その後も分裂を続けて不定胚形成へと向かうことが知られている（Fan et al. 1988, Hamaoka et al. 1991a）。低温処理期間の進行とともに、一細胞期の小胞子は減少し、その減少分の大部分は、大きさの異なる2つの核からなる二細胞期の小胞子に発達した。しかし、僅かではあるが、同じ大小の2つの核からなる二細胞期の小胞子へ発達するのも観察された（Table 2-3）。つまり、低温処理中に、小胞子はゆっくりと成熟花粉へと三つの不均等サイズの細胞を発達させると同時に、ごく一部の小胞子からは脱分化した均等サイズの二細胞が形成され不定胚形成に向かうと推察される。これが、低温前処理が不定胚形成を促進する一因と考えられる。

低温処理により通常の小胞子発達から脱達し、栄養細胞と生殖細胞の区別がなくなり、均等サイズ二分裂を行うメカニズムは現段階では不明であるが、以下のような仮説が考えられている。Zhao et al. (1996a) は、ナタネの小胞子培養において、25 μM のコルヒチン処理が不定胚形成に効果的であることから、コルヒチン処理により、小胞子内の微小管が脱重合した結果、細胞骨格が崩壊して、初期分裂が均等サイズ二分裂から均等サイズ二分裂へと変化すると推定している。また、タバコの BY-2 培養細胞では、低温処理によって微小管が崩壊することが報告されており（Hasezawa et al. 1997），ハクサイの小胞子培養でも、低温前処
理が１細胞期後期の小胞子の微小管を崩壊させて不均等サイズ二分裂から均等サイズ二分裂に変化した可能性が考えられる。

前節において、花序は蕾に比べて低温前処理による不定胚形成の向上効果は低かった。この原因のひとつとして、小胞子培養に用いた蕾の選定時期の違いが考えられる。蕾処理では、選定した蕾を低温処理後そのまま培養するのに対し、花序処理では、処理後の花序から選定した蕾を培養した。選定の際の P/A の割合は、その蕾中の小胞子の発達ステージの指標の一つとして用いており、P/A が 0.5 ～ 0.7 の無処理の蕾は、その大部分は不定胚形成能が高い一細胞期後期の小胞子であることを確認している。一方、蕾の低温処理 29 日には、P/A の割合が 0.5 ～ 0.7 から 0.9 ～ 1.0 へ増大していた。これは、低温処理中に、小胞子が成熟花粉に向かって徐々に発達したことを示す。実際に、蕾の処理を更に続けると、シャーレの中で開花することを確認した。花序の低温処理後に、P/A が 0.5 ～ 0.7 を指標にして蕾を選定したので、高い胚発生能力をもつ小胞子を含む蕾を選定できなかった可能性がある。また、蕾処理では、蕾が培養液中にあり、栄養供給が可能であるのに対し、花序処理では、水差しの状態にあり、栄養は供給されないという栄養条件の違いがあった。これらの理由から、低温処理は花序よりも蕾で、不定胚の形成効果が高かったと考えられる。

第3節 1個体の材料植物から得られる倍加半数体数の推定

半数体育種では、育種目標に合致する遺伝子型の個体を選抜・獲得できるか否かが育種の成否を決定する。例えば、ヘテロ性の高い F1 品種を材料とすると、n 個の遺伝子座について、それぞれ、対立遺伝子を共通セットで有する半数体が出現する確率は、材料植物が n 個の遺伝子座のすべてがヘテロの場合、(1/2)^n となる。したがって、目的とする遺伝子型を有する半数体を確実に 1 個体以上獲得するためには莫大な数の半数体を作出しなければならない。これが半数体育種
上の一つの問題点である。一方、F₂分離世代で一度個体選抜したものを材料すると、ホモ化に必要な個体数はF₁植物の場合と比べて大幅に減少する。しかし、この場合でも複数の遺伝子座について導入したい対立遺伝子を共通セットで有する個体を確実に得るためには、F₂世代で選抜した特定1個体から出来るだけ多数の倍加半数体を効率的に作出することが必要となる。本節では、圃場で選抜した1個体の材料から倍加半数体を作出する場合を想定し、温室で栽培した1個体から開花期間中に得られる材料蕾の数や倍加半数体数の検討を行った。

第1項 材料植物 1個体からの小胞子培養

材料および方法

植物材料

ハクサイF₁品種‘W1116’を植物材料として用い、第1節と同様に栽培した。抽苔開花した植物体から任意に1個体を選定し、開花期間中にこの個体から得られるすべての花序を採集し、一細胞期後期の小胞子を含む蕾を選定して小胞子培養に供試した。なお、ここでは、低温前処理を実施しなかった。

小胞子培養

小胞子培養は第1節の方法に若干の変更を加えて行った。花序を採取して、共通の方法と同様に蕾を選定し、小胞子を単離して収量を調査後、培養密度は1×10⁶/mlになるように調整し、滅菌シャーレ（径6cm、高さ1.5cm）に1.6mlずつ分注して培養した。培地の6-benzyladenine（BA）濃度を0.1, 0.5, 1.0mg/lとし、濃度ごとに3シャーレ、合計9シャーレの培養を行った。4週間後に形成した不定胚数（魚雷型胚および子葉型胚）の調査を行った。
結果

培養開始からの日数、採取花序数、培養蕾数、単離小胞子の収量、1蕾当たりの小胞子数、形成した不定胚数を調査した(Table 2-5)。1個体から抽苔開花以降、1月14日から6月7日までの143日間に27回にわたって花序を探取することができ、1,135蕾から621×10^5個の小胞子を培養に供試した。これ以降は植物体が消耗し、培養に供試可能な蕾は採取できなかった。合計243シャレの小胞子培養により559の不定胚を得た。単離したすべての小胞子を培養した場合に得られる推定獲得不定胚数は970で、培養蕾当たりの平均不定胚形成数は0.85個であった。ただし、1蕾当たりに含まれる小胞子の数は、材料採集の後期において減少する傾向にあった。

第2項　考察

品種‘W1116’の1個体の実生から、可能な限り蕾を採取したところ、材料蕾は4ヶ月以上に渡り採取可能で、それらを小胞子培養することにより約1000程度の不定胚が得られたことがわかった。始めの6回の約1ヶ月間の培養で約280の不定胚、続く9回の約1ヶ月間の培養で600の不定胚、その後の11回約3ヶ月の培養で約90の不定胚が得られたことは、2ヶ月までは不定胚発生効率が比較的高く、2ヶ月を越えると発生率が低下することを示唆している。また、この試験においてはBA濃度の異なる3種類の培地を用いて小胞子培養を行ったが、最適な濃度は培養日により異なり、一定の傾向は認められなかったことから、培地よりも植物材料の影響が大きいものと考えられた。実際に育種に利用する際には、培地のBA濃度を3段階程度にすれば、材料植物の影響を回避できる可能性が示唆された。

不定胚から倍加半数体を得るまでには、不定胚からの幼植物(シュート)再分化、発根、順化、半数体の倍加処理、自殖種子の採種といった段階がある(詳細な
Table 2-5. Production of embryos by microspore culture from one mother plant in *B. rapa* subsp. *pekinesis* L. (Chinese cabbage)

<table>
<thead>
<tr>
<th>No. of Culture days from started culture</th>
<th>No. of Inflorescence</th>
<th>No. of Buds</th>
<th>Yield of Microspores (x10^6)</th>
<th>No. of Microspores per Bud (x10^5)</th>
<th>Yield of Embryo BA (mg/l)</th>
<th>Total Yield of Embryo per petri dish</th>
<th>No. of embryo yield of Embryos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
<td>20</td>
<td>14.4</td>
<td>44.0</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5</td>
<td>20</td>
<td>16.0</td>
<td>31.0</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>10</td>
<td>39</td>
<td>27.6</td>
<td>29.4</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>16</td>
<td>48</td>
<td>33.6</td>
<td>38.0</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>20</td>
<td>50</td>
<td>32.5</td>
<td>35.4</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>20</td>
<td>50</td>
<td>39.2</td>
<td>41.2</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>27</td>
<td>20</td>
<td>47</td>
<td>31.7</td>
<td>34.7</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>33</td>
<td>22</td>
<td>59</td>
<td>43.0</td>
<td>46.0</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>35</td>
<td>20</td>
<td>57</td>
<td>32.0</td>
<td>35.0</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>25</td>
<td>50</td>
<td>29.7</td>
<td>32.7</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>45</td>
<td>30</td>
<td>52</td>
<td>21.6</td>
<td>24.6</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>49</td>
<td>30</td>
<td>44</td>
<td>21.6</td>
<td>24.6</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>52</td>
<td>40</td>
<td>50</td>
<td>25.2</td>
<td>28.2</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>55</td>
<td>33</td>
<td>45</td>
<td>24.0</td>
<td>27.0</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>59</td>
<td>30</td>
<td>37</td>
<td>18.4</td>
<td>21.4</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>16</td>
<td>62</td>
<td>20</td>
<td>31</td>
<td>22.4</td>
<td>25.4</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>17</td>
<td>67</td>
<td>40</td>
<td>55</td>
<td>27.2</td>
<td>30.2</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>18</td>
<td>73</td>
<td>40</td>
<td>40</td>
<td>20.0</td>
<td>23.0</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>19</td>
<td>79</td>
<td>50</td>
<td>40</td>
<td>16.0</td>
<td>19.0</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>82</td>
<td>60</td>
<td>45</td>
<td>18.0</td>
<td>21.0</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>21</td>
<td>86</td>
<td>35</td>
<td>33</td>
<td>14.4</td>
<td>17.4</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>22</td>
<td>94</td>
<td>35</td>
<td>48</td>
<td>20.8</td>
<td>23.8</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>23</td>
<td>102</td>
<td>45</td>
<td>49</td>
<td>19.2</td>
<td>22.2</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>24</td>
<td>115</td>
<td>50</td>
<td>35</td>
<td>14.5</td>
<td>17.5</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>25</td>
<td>128</td>
<td>30</td>
<td>41</td>
<td>18.8</td>
<td>21.8</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>26</td>
<td>132</td>
<td>27</td>
<td>22</td>
<td>10.0</td>
<td>13.0</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>27</td>
<td>145</td>
<td>23</td>
<td>28</td>
<td>9.1</td>
<td>12.1</td>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>195</td>
<td>179</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.9</td>
<td>42.0</td>
</tr>
</tbody>
</table>

* Microspore density of 5x10^5/ml on microspore culture.
方法については本章第4節に記載）。実際には不定胚から倍加半数体の種子を得るまでの生存効率は50%以下になるので、品種‘W1116’の小胞子培養から約400の倍加半数体の作出が予測できる。第3節の結果は品種‘W1116’の1個体に基づく事例であるが、半数体育種の実行計画の策定の際には、材料植物の数、培養の作業量およびコストといった考慮すべき事項を示唆している。

第4節 薬および小胞子培養由来の不定胚からの再分化植物の作出と

倍数性的検討

薬・小胞子培養により得られた半数性植物から同型接合体すなわち倍加半数体を獲得するためには、再分化した半数性植物にコルヒチン処理を行うことにより染色体を倍加する必要がある。この処理は煩雑であり、処理後新たに倍加したシュートが生育するまでには2ヶ月以上を必要とし、倍加成活率は50%程度である。一方、薬・小胞子培養により得られる再分化植物体には、半数体の他に自然倍加した二倍体、まれに四倍体、八倍体といった高次倍数体も出現することが知られている（Keller 1975, Takahata 1997）。アブラナ属（Brassica）植物においては、再分化植物における半数体、二倍体および高次倍数体の割合は品種・系統によって異なることが報告されている（Takahata 1997, Farnhan 1998）。

B. napus（ナタネ）では、薬培養と小胞子培養間で種々倍数体の発生割合が異なり、自然倍加（二倍体）頻度は薬培養の方が高いことが報告されている（Lichter et al. 1988）。四倍体を含む高次倍数体は、通常、育種母本に利用することはできない。しかし、自然倍加二倍体は、倍加処理を必要としないので、直ちに開花誘導を行って、自殖種子を得ることが可能である。薬・小胞子培養を利用した半数体育種では、自然倍加二倍体の出現割合が増加すると倍加処理の作業量が減少するので、倍加半数体獲得までの期間が短縮して育種の効率
が向上する。第1項では、二倍体の割合を増加させるための手法開発に役立つ基礎的なデータを得るために、ハクサイの薬培養と小胞子培養により得られた再分化植物における、半数体、二倍体、高次倍数体の割合を調査した。

また、自然倍加に関して、意図的な操作を可能にするためには、先ず自然倍加が発生する時期を特定する必要がある。そのため、小胞子培養により得られた不定胚について、その倍数性を調査した（第2項）。

第1項 共通の方法

薬培養

薬培養は、Hamaokaら（1991a）の方法に従った。採取した花序から、幅1.5～2.0mmの蕾を集め、1%サラシ粉溶液の上清に15分間浸漬して表面殺菌した後、滅菌水で3回洗浄した。蕾を実体顕微鏡下でピンセットを用いて解剖し、花弁長と薬長の比が0.5～0.7の蕾を選定した。これらの蕾から薬を摘出し、修正B5培地（Keller and Armstrong 1979, Table 2-6）に置床した。これらの薬は、35℃の暗黒条件下で24時間静置する高温処理を行った後、25℃の暗黒条件下で培養した。

小胞子培養

小胞子培養は第1節と同様の方法で行い、必要に応じて薬の低温前処理を実施した。

不定胚からの植物体再分化

薬培養により得られた不定胚（魚雷型胚および子葉型胚）は、再分化培地として2%シロ糖、0.5mg/l kinetin、0.02mg/l NAAおよび0.8%寒天を含むB5培地（Table 2-6, Gamborg et al. 1968）に移植し、25℃、12時間照明（白色蛍光灯、約30μmol m⁻² s⁻¹)－12時間暗黒の光周期下で培養した。

一方、小胞子培養によって得られた不定胚は、最初に再分化培地の寒天を
Table 2-6. Composition of culture media on antrh culture (mg/l).

<table>
<thead>
<tr>
<th>Component</th>
<th>B5</th>
<th>mB5</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNO₃</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>NaH₂PO₄·H₂O</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>(NH₄)₂SO₄</td>
<td>134</td>
<td>134</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>CaCl₂·2H₂O</td>
<td>150</td>
<td>750</td>
</tr>
<tr>
<td>MnSO₄·H₂O</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>ZnSO₄·7H₂O</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CuSO₄·5H₂O</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>CoCl₂·6H₂O</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>KI</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>H₃BO₃</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Na₂MoO₄·2H₂O</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>FeSO₄·7H₂O</td>
<td>27.8</td>
<td>27.8</td>
</tr>
<tr>
<td>Na₂·EDTA</td>
<td>37.3</td>
<td>37.3</td>
</tr>
<tr>
<td>Inositol</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Nicotinic acid</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Prydoxin·HCl</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Thiamine·HCl</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Glutamine</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>Serine</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>1-Naphtalene acetic acid (NAA)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>2,4-dichlorophenoxyacetic acid (2,4-D)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Sucrose</td>
<td>20,000</td>
<td>100,000</td>
</tr>
<tr>
<td>Agar</td>
<td>8,000</td>
<td>8,000</td>
</tr>
</tbody>
</table>

The medium was adjusted to pH 5.8 and sterilized by autoclaving.
ゲランガム（和光純薬工業（株））に置き換え、0.2%の活性炭を加えた培地（修正再分化培地）で2週間培養した後、前述の再分化培地で培養するという2段階法により再分化を促した。なお、培養温度および光条件は前述と同様であった。

発根を誘導するため、不定胚から再分化したシュート（幼苗）を、2%ショ糖と0.8%寒天を含むB5培地に移植した。発根した幼植物体は、培地から取り出してビートモス（主原料）、バーミキュライトおよび元肥料を含む市販の培養土であるメトロミックス350（サンガロー社、カナダ）を入れた直径約6cmのビニールポットに移植し、相対湿度90%以上に制御した温室内に2週間置いて順化した。その後は、赤玉中粒：堆肥：原野土が2:5:3で、肥料分としてパーセージS625（8g/l；N:P:K=16:12:15、清和肥料工業（株）、大阪）、過リン酸石灰（2.2g/l）、苦土石灰（1.6g/l）を加えた培養土を入れた直径約15cmの鉢に移植し、温室内で栽培した。

第2項 培養法が再分化植物の倍数性に与える影響

材料および方法

品種、'W1116'および'信玄'（渡辺採種場）を用い、抽苔開花後の花序を取り出し、培養と小胞子培養を行い、各々から得られた不
定胚から再分化植物を作出し、その倍数性を比較調査した。それらの結果の有意差は、2 × 3 分割表を用いて5%水準で行った。

結果
両品種とも薬培養と小胞子培養により再分化植物が得られた。不定胚からの植物体再分化率は約70%、発根率と順化率はともに90%以上で、培養法の違いによる差はなかった（データ省略）。蕾あたりの再分化植物体獲得率は、「信玄」よりも‘W1116’のほうが高く、両品種とも薬培養より小胞子培養の方が高かった（Table 2-7）。

培養法の違いが自然倍加頻度に及ぼす影響を比較した（Table 2-7）。両品種共に、薬培養でも小胞子培養でも半数体、二倍体および四倍体の植物が得られた。薬培養の場合、再分化植物の約60～80%が半数体であり、二倍体の割合は20～30%であった。それとは対照的に小胞子培養の場合には、両品種とも、半数体の割合は30%以下と低く、65%程度が二倍体であった。四倍体の割合は小胞子培養の方が薬培養よりも高かった。

供試した2品種から再分化植物が得られ、その獲得効率は薬培養よりも小胞子培養の方が高かった。また、両培養法においても、再分化植物の獲得効率は2品種間で著しい違いが認められた。再分化植物体の自然倍加頻度についても、培養法と品種による違いが認められた。

第3項 品種・系統が小胞子培養由来の再分化植物の倍数性を与える影響
材料および方法
‘春楽’（（株）日本農林社）、‘北洋’（柿沼育種センター）、‘CRあっぱれ’（石井育種場（株））、‘桜大福’（（株）トーホク）および‘CR王手’（カネコ種苗（株））の5品種、および日本たばこ産業（株）の育成系統である‘63・6’、‘30・45’、
Table 2-7. Frequency distributions of haploids, diploids and tetraploids in the regenerated plants obtained by anther or microspore culture of *B. rapa* subsp. *pekinensis* L. (Chinese cabbage)

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Origin</th>
<th>% of plant regenerations per cultured bud</th>
<th>No. of plants examined</th>
<th>% of regenerated plants with each ploidy ¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Haploids</td>
</tr>
<tr>
<td>W1116</td>
<td>Anther culture</td>
<td>29.8</td>
<td>100</td>
<td>78.0</td>
</tr>
<tr>
<td></td>
<td>Microspore culture</td>
<td>54.3</td>
<td>114</td>
<td>28.9</td>
</tr>
<tr>
<td>Singen</td>
<td>Anther culture</td>
<td>6.4</td>
<td>35</td>
<td>68.6</td>
</tr>
<tr>
<td></td>
<td>Microspore culture</td>
<td>9.6</td>
<td>48</td>
<td>25.0</td>
</tr>
</tbody>
</table>

¹) The differences in the frequency of the regenerants for each ploidy between the two culture methods in each cultivar were tested by 2×3 contingency table at 5% level.
‘60-32’，‘YF2・57’，‘YF2・121’，‘KG13’および‘JN191’の7系統を用いた。抽苔開花後の花序を採取して小胞子培養に供試した。得られた不定胚から再分化植物を作出し、その倍数性を調査した。

結果
12品種・系統を供試して小胞子培養を行った結果、各々から得られた再分化植物の植物体数とその倍数性を調査した(Table 2-8)。12品種のすべてで再分化植物が得られた。蕾あたりの再分化植物体獲得率は、品種・系統により5.6%～205.3%と著しく変動した。再分化植物の倍数性は、10の品種・系統では、二倍体の割合が50%以上で多数を占めた。‘CR 王手’と‘YF2・57’では、半数体の割合の方が多かったが、二倍体の割合は、実験1で薫培養により得られた再分化植物の場合より高く、約40%であった。
12品種・系統の小胞子培養を行い、すべての品種・系統から再分化植物を得たが、その獲得効率は品種・系統により著しく変動した。自然倍加の頻度も品種・系統により変動した。

第4項 不定胚の倍数性調査による自然倍加の発生時期の推定
材料及び方法
小胞子培養により得られた不定胚の倍数性の調査
品種‘W1116’を用いて小胞子培養を行った。小胞子培養を開始して約4週間後に、生成した100個の不定胚（魚雷型胚および子葉型胚）について1個ずつ倍数性を調査した。不定胚の倍数性の確認は、フローサイトメーター（Partec PA1、（株）チヨダサイエンス、東京）を用いて、細胞核当たりの相対DNA量を調査することにより行った。1mlの抽出溶液（10mM Tris・HCl（pH7.0）、100mM NaCl、10mM 2Na・ethylenediamine tetra acetate および
Table 2-8. Percentages of haploids, diploids and tetraploids in the regenerated plants obtained by microspore culture of five cultivars and 7 lines of *Brassica rapa* subsp. *pekinesis* L. (Chinese cabbage)

<table>
<thead>
<tr>
<th>Cultivars or lines</th>
<th>No. of experiments</th>
<th>% of plant regenerations per cultured bud</th>
<th>No. of plants examined</th>
<th>% of regenerated plants with each ploidy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Haploids</td>
</tr>
<tr>
<td>Sakuradaifuku</td>
<td>6</td>
<td>7.7</td>
<td>25</td>
<td>16.0</td>
</tr>
<tr>
<td>Shunraku</td>
<td>5</td>
<td>205.3</td>
<td>364</td>
<td>19.8</td>
</tr>
<tr>
<td>CR Appare</td>
<td>6</td>
<td>9.3</td>
<td>20</td>
<td>30.0</td>
</tr>
<tr>
<td>Hokuyo</td>
<td>3</td>
<td>313.1</td>
<td>310</td>
<td>38.4</td>
</tr>
<tr>
<td>CR Ote</td>
<td>7</td>
<td>12.7</td>
<td>31</td>
<td>51.6</td>
</tr>
<tr>
<td>30-45</td>
<td>18</td>
<td>18.5</td>
<td>126</td>
<td>9.5</td>
</tr>
<tr>
<td>63-6</td>
<td>16</td>
<td>32.5</td>
<td>197</td>
<td>9.6</td>
</tr>
<tr>
<td>JN19-1</td>
<td>9</td>
<td>5.6</td>
<td>19</td>
<td>36.8</td>
</tr>
<tr>
<td>YF2-121</td>
<td>7</td>
<td>11.7</td>
<td>26</td>
<td>38.5</td>
</tr>
<tr>
<td>KG13</td>
<td>29</td>
<td>15.8</td>
<td>184</td>
<td>39.1</td>
</tr>
<tr>
<td>60-32</td>
<td>17</td>
<td>22.6</td>
<td>136</td>
<td>47.8</td>
</tr>
<tr>
<td>YF2-57</td>
<td>20</td>
<td>25.7</td>
<td>186</td>
<td>60.2</td>
</tr>
</tbody>
</table>
0.1% Triton X-100)を入れた直徑 6 cm のプラスチックシャーレに 1 個の不定胚を入れ、鋭利な片刃メス（フェザー、FAS-10）で刻んで細胞核を遊離させた。50 μm のナイロンメッシュでろ過して残渣を除いた後、終濃度が 0.2 mg/l になるように DAPI 染色液を加えて染色した。この溶液をフローサイトメーターにより分析した。

結果
自然倍加の発生時期を推定するため、品種 ‘W1116’ の小胞子培養によって得られた不定胚 100 個の倍数性を調査した結果、70%が二倍性で、30%が半数性であった(Table 2·10, Figure 2·4)。1C, 2Cおよび 4Cのピークは、それぞれn, 2n, 4nの蛍光強度を示し、1番目のピークは細胞周期のG₀ + G₁期に、2番目のピークはG₂ + M期に相当する。調査した100個の胚では、四倍体以上の高次倍数体や倍数性キメラの不定胚を確認することはできなかった。

第5項　考察
薬培養と小胞子培養の間で再分化植物の半数体、二倍体、四倍体の構成割合が大きく異なったことは、培養法の違いが自然倍加発生に大きな影響を与えることを示唆している。B. oleracea（ブロッコリー）において Wang ら(1999)は、薬培養と小胞子培養では、再分化植物体の自然倍加頻度に有意差がないことを報告している。一方、B. napus（ナタネ）において Lichter ら(1988)は、再分化植物の半数体と二倍体の割合が、それぞれ、薬培養では 33%と 67%、小胞子培養では 70.7%と 29.3%と報告している。これは、本節におけるハクサイとは逆の結果であり、培養法の自然倍加への影響の仕方は植物種によって異なる可能性を示している。さらに、本研究では、自然倍加の頻度は同一種内の品種や系統によっても異なることが示唆された。B. oleracea (Wang et al. 1999), B.
Table 2-9. Percentages of haploids and diploids in the regenerated embryos obtained by microspore culture of *B. rapa* subsp. *pekinensis* L. (Chinese cabbage)

<table>
<thead>
<tr>
<th>No. of embryos examined</th>
<th>% of regenerated embryos with each ploidy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Haploids</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
</tr>
</tbody>
</table>
Figure 2-4. Histograms of fluorescence intensity of nuclei from a torpedo shaped embryo of *B. rapa*. A: diploid embryo, B: haploid embryo and C: control diploid leaf. One primary peak that corresponds to $G_0 + G_1$ phase cells and a secondary peak corresponds to $G_2 + M$ phase cells. 1C: haploid, 2C: diploid and 4C: tetraploid.
napus（Lichter et al. 1988）およびBoleracea（キャベツ）（Sato et al. 2005）の結果においても、品種や系統により自然倍加の頻度が異なることが報告されている。これらの結果から、小胞子における自然倍加に対する感受性は、培養方法、植物種そして品種や系統により著しく異なるものと考えられる。

薬培養や小胞子培養を利用する育種では、いかに効率的に倍加半数体を獲得できるかが重要となる。Lichter（1988）らは、B. napus では小胞子培養の方が、薬培養に比べて植物体の作出効率が10倍以上高いので、小胞子培養の方が有利であると考察している。本研究におけるハクサイの場合でも、蕾当たりの植物体再生効率は薬培養より小胞子培養の方が高いことから小胞子培養の方が有利と考えられる。さらに、二倍体の出現率も小胞子培養の方が高い品種・系統が多かったので、小胞子培養が作業量と倍加半数体獲得の時間の点で有利である。しかも、実体顕微鏡下で1蕾ずつ薬を摘出する薬培養に比べて小胞子培養は一度に多数の蕾を処理できるので、培養の作業効率性の点でも優れている。これらのことから、ハクサイの半数体育種を実施する場合には、薬培養よりも小胞子培養を利用する方が有利と考えられる。

小胞子培養で得られた不定胚には、半数性と二倍数性のものが存在し、その割合は再分化植物と同程度であったことから、自然倍加は小胞子からの胚形成過程の極初期に、すでに生じていると推定される。さらに、倍数性キメラが存在しなかったので、不定胚形成へ向かう最初の細胞分裂時に自然倍加が起きた可能性が強く示唆される。Keller（1987）らは、オオムギやコムギの薬培養における花粉の細胞学的観察によって、自然倍加は胚発生初期の細胞核の融合と有糸分裂時に起きると推察している。自然倍加が胚発生のごく初期に起きているのであれば、培養の極初期化もしくは培養開始直前に何らかの処理をすることにより、二倍体の出現割合を増加させることができる可能性がある。実際、B. napus では、小胞子培養開始時に培地にコルヒチン（Zhao et al. 1996b）やトリフルラリン

- 44 -
（Zhao and Simmonds 1995）を添加することで二倍体の再分化植物が増加したことが報告されている。また、凍結処理した小胞子の培養によって、二倍体の出現頻度が向上するという報告もある（Sharne et al. 1988, Chen and Beversdorf 1992）。

本研究において、ハクサイの葯・小胞子培養により得られた再分化植物のうち、四倍体の出現頻度は品種系統により異なり0〜20.0%であった。B. oleracea（キャベツ）においてSatoら（2005）は、葯培養により得られた植物体では四倍体が7〜50%得られることを報告している。Wangら（1999）もブロッコリーの葯・小胞子培養において、四倍体の出現割合は5〜58%であったと報告している。これらのことから、自然倍加率を上げる操作では、二倍体を増加させるだけでなく、同時に四倍体の出現割合を抑制するという反する技術の開発も重要と考えられる。

本研究において、葯・小胞子培養から再分化植物体の獲得までの各段階の効率は、不定胚からの植物体再分化率70%, シュート（苗条）からの発根率90%, 再分化植物体の順化成功率90%およびコルヒチン処理による染色体倍加率は50%である（Table 2-11）。ハクサイ葯培養の最初の報告（Sato et al. 1989a）では、不定胚からの再分化率は5%以下で非常に低く、実用化レベルではなかった。しかし、再分化培地に各種の植物成長調節剤を組み合わせて添加すると70%程度までの再分化率を向上できた。小胞子培養によって得られた不定胚からの再分化は、葯培養由来の不定胚に比べてさらに困難であったが、葯培養から小胞子培養への移行の妨げにもなっていた。しかし、2段階の培養法を用いることで、この困難を克服し、葯培養由来の不定胚からの再分化率と同程度までに向上した。半数体のコルヒチン処理による倍加成功率は50%と低かったが、葯培養に較べて小胞子培養では自然倍加した二倍体の出現頻度が高いので、倍加半数体獲得効率は倍加処理のは著しく向上する。本研究で開発した倍加半数体作出方法は、育種への利用という観点では実用レベルに達していると考えられる。
えられる。倍加率の向上、自然倍加の制御および不定形成における品種間差の克服により、さらに育種効率が向上するものと考えられる。
Table 2-10. Successful efficiency of each process from obtained embryo to colchicine treatment.

<table>
<thead>
<tr>
<th>Process</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoot regeneration from the embryo</td>
<td>70</td>
</tr>
<tr>
<td>Root formation from the shoot</td>
<td>90</td>
</tr>
<tr>
<td>Acclimatization</td>
<td>90</td>
</tr>
<tr>
<td>Chromosome doubling by colchicine</td>
<td>50</td>
</tr>
</tbody>
</table>
第3章 優良倍加半数体系統の育成

本章では、半数体育種の実用場面での有用技術として、ハクサイ花粉の保存に関する検討を行った。さらに開発した半数体育種技術の実用化を検討するために、倍加半数体の作出と選抜、そして選抜された倍加半数体系統を用いたF1新品種の育成を試みた。

第1節 交配に利用するための成熟花粉の保存に関する検討

花粉の保存技術は育種やF1種子の採種において、開花期の異なる系統間の交配を可能にする。倍加半数体を用いた品種育成において、小胞子培養により得られる再分化植物と通常の系統選抜を行った個体との間で試験交配を実施する場合に、それらの開花期が必ずしも一致しないといった問題が生じる。また、それぞれの再分化植物同士で交配を行いたい場合でも、各個体の生育は斉一ではないので、開花期が合致せず交配できないといった問題が常に生じる。こうした倍加半数体を用いた交配育種の日常的な問題は、花粉を保存できれば、簡単に解決できる。

アブラナ属（Brassica）植物のB. oleracea, B. campestrisおよびB. napusでは、花粉は-20℃の乾燥状態で保存すれば1年以上生存可能であることが報告されている（Ockendon, 1974; Brown and Dyer, 1991）。しかし、品種によっては保存中に花粉稔性が低下することや、保存花粉を受粉して得られた種子の一部が登熟途中の莢上で早期に発芽する現象が報告されている（Brown and Dyer, 1991）。品種による花粉保存時の稔性の低下や種子の早期発芽は遺伝子型によるものなのか、花粉採取時の中環境を含めた保存条件の微細な違いによるものかは必ずしも明らかにされていない。実際の育種場面では1年以上の長期保存よりも数週間から数ヶ月の比較的短期間の保存が必要な場合が多く、また,
出来るだけ簡便な手法が望まれる。

本節においてはハクサイ（Brassica rapa subsp. pekinensis L.）の半数体育種法の実用化において大きな障害となる開花期のずれを解決するため，できるだけ簡便な花粉の保存方法を確立することを目指した。最初に、ハクサイ花粉の保存に関する検討を行うための基本条件となる簡便かつ安定的な花粉の生死判定法について検討した（第1項）。次いでこの検定法を用いて保存の条件や保存可能期間について検討した（第2項）。最後に長期保存した花粉について、受精能力や自家不和合性について検討した（第3項）。

第1項 in vitro での花粉発芽法の検討

本項では，生存率の簡便かつ安定的な花粉の生死判定法として，人工培地上ででの花粉の発芽能の有無により判定する方法について検討した。

1. 共通の材料および方法

材料植物

ハクサイ（Brassica rapa subsp. pekinensis L.）品種‘W1116’（株）渡辺採種場を主な実験材料として用いた。材料植物の栽培は，第2章第1節共通の方法と同様に行い，抽苔開花後に材料を順次採取し実験した。

花粉の採取

開花直前もしくは直後の花から裂開前の薬を集め，相対湿度（RH）15%に調整した20℃暗黒下に16～24時間置いて乾燥・開薬させた。乾燥した薬壁と花粉が混在した状態で花粉を採取し，各種の処理を行った。なお，実験は6月から12月の間に実施した。

花粉発芽培地と発芽

花粉発芽の培地としては，20%のショ糖を含むKwack (1964)の培地を基本培
地として用いた(Table 3-1). 全ての培地はオートクレーブ殺菌後に使用した. 24 ×48mm のカバーグラスの上に綿棒に付着させた 500 ～1000 粒程度の花粉粒を置き、その上に 20μl の液体培地を滴下した. その後、プラスチックシャーレ（直径 9 cm、高さ 2 cm）の中に蒸留水で湿らせた濾紙を敷いた上に楊枝を 2 本置き、その上に濾紙に接触しないように上記のカバーグラスを置いた. このシャーレを密封容器の中にいれて高湿度状態を保持したまま、20℃暗黒下で 8 ～16 時間培養した. その後、顕微鏡下で花粉の発芽率を調査した. 花粉管が花粉粒の長径以上に発芽伸長したものを発芽と判定した. 破裂または奇形花粉は発芽とは判定しなかった.

2. 培地の pH の影響

方法

pH の影響を調査するため、塩酸または水酸化カリウム溶液用いて pH を 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 および 10.0 に調整した培地を用いて花粉の発芽を調査した. なお、この実験においては後述の花粉の湿度前処理は行っていない.

結果

花粉の in vitro 発芽に対する培地の pH の影響を調査した結果、花粉の発芽率は培地の pH が 7.0 ～9.0 で高い値が得られた(Figure 3-1). そこで、この後のお実験では最も高かった pH 8.0 の培地を用いた. しかし、その後いくつかの予備的な実験を行う中では、pH 8.0 の培地を用いた場合でも発芽率が低下する場合があった.
Table 3-1. Composition of culture medium for pollen germination.

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_3BO_3</td>
<td>100</td>
</tr>
<tr>
<td>Ca(NO_3)_4_4H_2O</td>
<td>300</td>
</tr>
<tr>
<td>MgSO_4_7H_2O</td>
<td>200</td>
</tr>
<tr>
<td>KNO_3</td>
<td>100</td>
</tr>
<tr>
<td>Sucrose</td>
<td>200,000</td>
</tr>
</tbody>
</table>

The medium was sterilized by autoclave.
Figure 3-1. The effect of the medium pH on the percentage of pollen germination in Chinese cabbage cv. ‘W1116’. More than 200 pollen grains were scored for each determination. Bars represent standard errors.
3. 湿度前処理の in vitro 花粉発芽への影響

方法

花粉発芽実験において、花粉へ発芽培地を滴下する前に一定の湿度条件下に花粉を一定期間静置する。湿度前処理を行った。花粉を置いたカバーグラスを、相対湿度（RH）を調整した密閉容器に入れて暗黒下で16〜24時間静置した。RHの調整は、密閉容器中に6種の塩類の飽和溶液を静置して、15, 32, 52, 66, 81または95%RHに設定した（Table 3-2）。

結果

花粉の in vitro 発芽能力に対する湿度前処理の影響を調査した結果、52%RHと66%RHの湿度前処理区では80%以上の高い発芽率が認められたのに対し、15%RHと95%RH処理区では20%以下の低い発芽率を示した（Figure 3-2）。また、81%RHおよび32%RHでは中間的な発芽率を示した。66%RHでの湿度前処理の時間を調査した結果、5時間の処理でその効果が十分に得られることを確認した（データ省略）。

66%RHの湿度前処理で最も高い発芽率を示したので、以降の in vitro 花粉発芽の実験では66%RHで5時間の低温前処理を行った。

4. 湿度前処理が花粉の形態に与える影響

方法

湿度前処理による花粉の外観形態の変化を共焦点レーザー顕微鏡（バイオラッドラポラトリーズ（株）MRC・600）により観察した。花粉を15, 32, 66または95%RHで16時間湿度処理をした後、湿度を調節したプラスチックシャーレ内に置いて状態で観察に供試した。シャーレ内に各種の飽和塩溶液を入れ、上部に径1cmの穴をあけ、花粉を置いたカバーグラスを逆さにして穴の上に置き、隙間
Table 3-2. Theoritical values of relative humidity in the surface space above supersaturated solutions of various salts at 25°C

<table>
<thead>
<tr>
<th>Salts</th>
<th>Relative humidity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiCl</td>
<td>15.0</td>
</tr>
<tr>
<td>CaCl$_2$·2H$_2$O</td>
<td>32.0</td>
</tr>
<tr>
<td>NaHSO$_4$·2H$_2$O</td>
<td>52.0</td>
</tr>
<tr>
<td>NaNO$_2$</td>
<td>66.0</td>
</tr>
<tr>
<td>(NH$_4$)$_2$ SO$_4$</td>
<td>81.0</td>
</tr>
<tr>
<td>Na$_2$HPO$_4$·2H$_2$O</td>
<td>95.0</td>
</tr>
</tbody>
</table>
Figure 3.2. The effect of humidity pretreatment on pollen germination in Chinese cabbage cv. ‘W1116’. Before the germination medium (pH 8.0) was added to pollen, the pollen was incubated in the relative humidity, 15, 32, 52, 66, 81 and 95%, at 25°C in the dark for 24 hours. More than 200 pollen grains were scored for each determination. Bars represent standard errors.
をパラフィルムと白性ワセリンでふさいで密封した。処理後、にこのままの状態で観察した。

結果
異なる相対湿度の条件下で、16時間処理した花粉の形態を観察した結果、15, 32および66%RH処理の間では明確な差は認められずやや細長いラグビーボール状の形状であったが、95%RH処理後の花粉は前者に比べてやや円形状に膨張しており、形態的に明らかな差異が認められた(Figure 3-3)。

95%RHの高湿度処理は花粉に過度の水分吸収を促し、その結果、花粉の形状が肥大したと思われる。

5. 花粉発芽率の品種・系統間差異
材料および方法

in vitroでの花粉発芽率の品種・系統間差異を検討するため、「CR歓呼」((株)日本農林社)、「つばめ」((株)トーホク)、「サラダ白菜」(タキイ種苗(株))、「信玄」((株)渡辺採種場)および'Formosa 45 days'(Asian Vegetable Research and Development Center (AVRDC))を用いた。

結果
実験2のin vitro発芽の条件において、「CR歓呼」((株)日本農林社)、「つばめ」((株)トーホク)、「サラダ白菜」(タキイ種苗(株))、「信玄」((株)渡辺採種場)および'Formosa 45 days'(Asian Vegetable Research and Development Center (AVRDC))のin vitro発芽率はそれぞれ82.8%, 90.1%, 83.2%, 97.6%および95.4%であった。いずれの品種・系統も80%以上の高い花粉発芽率となり、花粉発芽率の品種・系統間差はわずかであった。
Figure 3-3. Pollen grains treated with various relative humidity (RH). A: 15% RH, B: 33% RH, C: 66% RH, D: 95% RH. The pollen grains had been incubated under each humidity condition for 16 hours before observation. Scale bar indicated 25 μm.
第2項 花粉の保存条件の検討

本項では、花粉の保存条件、特に温度、湿度および保存可能期間について検討した。花粉を各種の保存条件で保存した後、前項において確立したin vitro発芽による評価法を用いて、発芽率を調査した。

1. 花粉保存時の湿度の影響

方法

花粉をプラスチックシャーレ（径3 cm、高さ1 cm）に入れ、このシャーレを前節と同様の方法で15％RHまたは66％RHに調整した密閉容器に入れ、20℃、暗黒下で保存した。保存開始から1、2、3、4、5、7、10、14、21および25日経過後に花粉の発芽を調査した。in vitro花粉発芽の調査は、湿度前処理（66％RH、5時間）の有無の2条件下で行った。

結果

20℃の温度で、15％RHと66％RHで保存した花粉における、花粉発芽率の日ごとの変化を示した（Figure 3-4）。66％RHで保存した花粉の発芽率は急激に低下し、2日後で44％になり3日後にはほとんど発芽しなかった。一方、15％RHで保存した場合には、10日後で73％、14日後で43％の発芽率を示したが、その後の低下は顕著であった。また、in vitro花粉発芽実験における湿度前処理の効果について調査した結果、15％RHで保存した花粉で前処理を行わない場合は、2日後以降でも発芽率は極端に低下した。

花粉保存時の湿度は重要で、66％RH前処理5時間行った場合15％RHが66％RHよりも良好であった。
Figure 3-4. Time courses change in the percent germination pollens preserved at 15% RH (left) and 66% RH (right), at 20°C in Chinese cabbage cv. 'W1116'. Open circle and close circle indicate the percentage of germination with and without the humidity pretreatment at 66% RH for 5 hours, respectively. More than 200 pollen grains were scored for each determination.
2. 花粉保存時の温度の影響

方法

花粉をパラフィン紙で包み、シリカゲルを入れた密封プラスチック容器に入れた。この容器を－20, 5, 15または25℃の暗黒下で保存した。保存開始から1, 2, 3, 4, 6, 8, 10および12週間経過後にin vitro花粉発芽による発芽率を調査した。in vitro花粉発芽の調査では湿度前処理（66%RH, 5時間）を実施した。

結果

保存温度とその期間が異なる花粉における、発芽率の推移を示した(Figure 3-5). 25℃または15℃で保存した場合には、それぞれ3または4週後には花粉の発芽が認められなくなった。5℃で保存した場合には6週間経過後も、50%程度の発芽率を維持していたが、その後は時間経過とともに徐々に発芽率は低下し、12週後には10%程度になった。一方、－20℃で保存した場合には、12週間後でも90%程度の発芽能力を維持していた。さらに－20℃では、1年経過後も50%以上の発芽能力を示すことを確認した（データ省略）。

以上より、保存時の湿度は15%RH、温度は－20℃が良好で、12週間以上の保存が可能であった。

第3項 長期保存花粉の受精能力と自家不和合性

本項では、保存花粉が開花・葯の裂開直後の新鮮花粉と同様の受精能力を保持しているか、そして自家不和合性を維持しているかを、保存花粉を用いた交配によって確認しようとした。

材料および方法

前項に記載した方法で、－20℃で1年間保存したハクサイ品種 ‘W1116’の花粉を交配実験に用いた。交配母本には品種、‘つばめ’((株)トーホク) および
Figure 3-5. Time course changes of the pollen germination percentage preserved at various temperatures and periods in Chinese cabbage cv. ‘W1116’. Pollen grains were cultured for germination after the humidity pretreatment. More than 200 pollen grains were scored for each determination.
'W1116'(株)渡辺採種場)を用いた。植物体の栽培は第2章と同様に行った。この実験では保存花粉には湿度処理は行わず、葯が未裂開の花の葯を全て切除して、開花直後の花の柱頭に保存花粉を授粉した。同時に、同一花序の上部に位置する4つの蕾を用いて蕾受粉を以下のように行った。ピンセットを用いて蕾上部を取り除き柱頭を露出させた後、蕾当たり6つの葯を全て切除した後に保存した花粉を授粉した。対照として、当日開花した花の裂開直後の葯から採取した新鮮な花粉を用いて同様に授粉した。授粉した花および蕾にはパラフィン紙製の袋をかぶせ、他の花粉の混入を防いだ。授粉から2ヶ月後に1釜当たりの結実種子数の調査と、得られた種子の発芽調査を行った。プラスチックシャーレ(径9cm、高さ2cm)に湿らせた濾紙を置き、その上に得られた種子を播種し、25℃の培養室内(条件は第2章第4節共通の方法、植物体の再分化と同様)でインキュベートした。種子の発芽率は播種後10日後には打ち切った。

結果
保存花粉と新鮮花粉の受粉から2ヶ月後の種子の結実の結果を示した(Table 3-3)。品種間交配'つばめ'×'W1116'の組み合わせでは、保存花粉を用いても結実は新鮮花粉の場合とほぼ同数の種子が得られた。一方、'W1116'×'W1116'の自殖またはジブ交配の組み合わせでは、保存花粉と新鮮花粉の両方ともに最上部の若い蕾以外では、僅かな種子しか結実しなかった。これは自家不和合性の発現によるものであると推測された。
また、得られた種子の発芽調査の結果、保存花粉と新鮮花粉を用いた交配実験によって得られた種子発芽能力に差異は認められなかった(Figure 3-4)。
Table 3-3. Number of seeds per silique of each flower bud obtained by crosses using pollen preserved for 1 year or fresh pollen.

<table>
<thead>
<tr>
<th>Cross combination</th>
<th>Pollen condition</th>
<th>No. of seeds obtained / silique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Position on inflorescence</td>
<td>Bottom</td>
</tr>
<tr>
<td></td>
<td>Pollen condition</td>
<td>Anthesised</td>
</tr>
<tr>
<td>Tsubame W1116</td>
<td>Preserved</td>
<td>20</td>
</tr>
<tr>
<td>Tsubame W1116</td>
<td>Fresh</td>
<td>28</td>
</tr>
<tr>
<td>Tsubame W1116</td>
<td>Unpollinated</td>
<td>0</td>
</tr>
<tr>
<td>W1116 W1116</td>
<td>Preserved</td>
<td>0</td>
</tr>
<tr>
<td>W1116 W1116</td>
<td>Fresh</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 3-4. Germination of seeds of which obtained by pollination of preserved and fresh pollen.
第4項 考察

花粉の生存率を評価する最も直接的な方法は、柱頭に花粉を受粉して種子の稔実を調査することであるが、結果を得るまでには長い時間を要する。これに代わり、比較的簡便に花粉の生存率を評価するための方法として様々な手法が開発されているが、広範囲な植物種間で共通して利用可能な簡便かつ信頼性の高い方法は無いのが現状である（Shivanna et al. 1992）。生存率の評価方法の中でも、in vitroでの花粉発芽は最も一般的な方法であるが、最適な培地条件は植物種によって異なることが報告されている（Shivanna and Heslop-Harrison 1981）。本実験において、pH 8.0の培地を用いた場合でも実験ごとに変動することがあり、特に季節による変動が大きかった。したがって、この変動は実験室内や温室における環境要因によるものと推定された。その中でも湿度条件の変動が年
間を通して最も大きいと考えられた。この問題は、発芽培地で培養する前の花粉に湿度前処理を行うことにより改善することができた。本実験のハクサイにおいては、66%RHで5時間処理すると発芽率が向上することがわかった。一方、15%や95%RHの前処理では花粉発芽率は極端に低下した。形態観察の結果によれば、15%と66%RHでは外観上の変化は認められなかったが、95%RHでは、球状に膨らんでいた。このことは、95%RH処理では急激な水分吸収が生じたことで、発芽に悪影響を与えたと推定された。15%RH処理の結果は、極度に乾燥した状態の花粉は、通常の花粉発芽培地では何らかの理由により花粉管を発芽させにくい状態にあることを示している。

in vitroでの花粉発芽法について検討した結果、培地のpHは8.0が良好で、66%RHの湿度前処理により最も安定した花粉発芽が見られた。湿度前処理による花粉への形態的な影響は認められなかった。このin vitro花粉発芽法は複数の品種で同様の結果を示した。

花粉保存中の湿度は、花粉の生存率に著しく影響を与えた。20℃で保存した場合、15%RHの低湿度であれば2週間程度は40%以上の花粉が発芽能力を維持したが、66%RHでは3日後までにほとんどどの花粉が発芽能力を失っていた。この結果は、花粉を交配や保存に用いる場合には、比較的高湿度になりやすい温室内では、少なくとも開花から2日以内のなるべく新鮮な花粉を使用することが重要であることが示唆された。

花粉の保存温度と保存可能期間の関係については、25℃で10日程度、5℃で6週間程度、−20℃では1年程度であることが示された。したがって、開花期のずれに対しては、その期間に応じて冷蔵庫や冷凍庫の利用によって対応できることが示された。

交配実験の結果、−20℃で保存した花粉は新鮮花粉とほぼ同等の受精能力をもち、また、自家不和合性も維持していることがわかった。交配による保存花粉
の受精能力の調査では、in vitro 花粉発芽の調査とは異なって湿度前処理を行わなかった。それにも関わらず正常に結実したことは、人工培地上で発芽しない保存花粉の中にも十分な受精能力を保持しているものがあることがわかった。したがって、実用場面では保存花粉（-20℃）を直接交配に使用可能であることを示している。これらの結果から、ハクサイの花粉保存は比較的容易であり、保存花粉の利用によって、倍加半数体を利用した育種の際に生じる開花期のずれの問題を解決できることが示された。

次に、小胞子培養により倍加半数体の種子を獲得するまでの作業過程を時系列で示した（Figure 3-5）。再分化植物が自然倍加した二倍体の場合は、培養開始から9ヶ月を要し、半数体の場合には倍加処理のために2ヶ月必要となる。また、系統育種の作業過程と選抜個体を培養材料にした半数体育種の作業過程を比較した（Figure 3-6）。実際には、圃場で夏秋栽培（8月下旬播種、9月下旬定植）を行い、11月中旬〜12月上旬に選抜した個体を掘り上げて移植し、温室で開花誘導して得られた蕾を用いて、小胞子培養を2月〜5月に実施した場合、獲得した倍加半数体の開花期は、同年9月〜翌年2月くらいの秋から冬までの期間に渡る（温室で栽培した場合）（Figure 3-6）。通常の夏秋栽培個体の開花期は、前述の通り2月〜5月になる。倍加半数体から交配によりF1品種育成と採種のためには、F1親との一般・特定組合せ能力検定をしなければならない。選抜個体から作出した倍加半数体当代と、F1片親候補系統との交配で得られた種子をその年の夏秋栽培（播種8月下旬、定植9月下旬、収穫・選抜11月中旬〜12月中旬）に供試し、F1特定組合せの検定を実施しようとする場合、両者の開花期が大きく異なるので、交配可能な期間は2月のわずか1か月間だけとなる（Figure 3-6）。したがって、得られた多数の倍加半数体のうち、片親候補系統と交配できるのは2月に開花するものに限られてしまう。また、交配親のF1片親候補系統においても2月に開花するものに限られてしまう。したがっ
て、得られた倍加半数体の全てを、全てのF1片親候補系統と交配するためには、一旦倍加半数体系統の自殖種子を5〜6月に採種し、これを8月に播種して、翌年の2月〜5月に開花するように調整しなければならない。しかし、保存花粉の利用が可能になったので、9月から翌年2月にかけて開花する全ての倍加半数体の花粉を－20℃の低温で保存する。こうすると倍加半数体の一世代を省略して、この保存花粉を2月から5月に開花する全てのF1片親候補系統と交配することが可能となった。その結果、F1組合せ検定が1年早く実施できるようになった。
Figure 3.5. Time course processes in the production of doubled haploid seeds by microspore culture.
Figure 3-6. Time course processes in the pedigree breeding and the doubled haploid (DH) breeding.
第2節 薬および小胞子培養による優良倍加半数体系統の作出と品種育成

前節までに、ハクサイの薬・小胞子培養による倍加半数体作出方法や成熟花
粉の保存技術についての開発・検討を行ってきた。本節では、開発した技術の活
用による半数体育種の実用化、すなわち倍加半数体を用いた品種育成につい
て実証的に検証した。

①第1項では、F₁品種から薬を供試して薬培養を行い、得られた倍加半数体を
用いた新品種育成を試みた（F₁ DH法という）。

②第2項では、半数体育種法の効率をより高くすることを目指して、薬培養に比
けて作業効率の高い小胞子培養を用いた。

③次に、F₁品種から得たF₂世代を圃場で栽培して育種目標について弱い選抜
個体から倍加半数体を作出する方法（F₂ DH法という）を試みた。自殖選抜により
固定化が進んでいるので、少数の倍加半数体から、多くの遺伝子座について固
定した優良個体を獲得できる可能性がある。この場合、供試材料は選抜された1
個体のみであるために、小胞子培養に用いる蕾の数は限定される。

④また、育種年数をさらに短縮させるため、倍加半数体の再分化植物当代を直
接圃場で栽培し、特性検査および選抜を試みた。

第1項 F₁品種からの倍加半数体の作出と育種母本の育成

育種目標は、ハクサイの栽培上の大きな減収量の原因となる根こぶ病に対する
抵抗性と、消費者の嗜好性に合致した、球内部の黄色味が強い黄芯系の付与
である。目的形質をもつF₁品種を材料に用いて薬培養法により倍加半数体を作
出し、優良個体の選抜と品種育成を試みた。
材料および方法

材料植物

ハクサイ（Brassica rapa subsp. pekinensis L.）の試作系統4系統、
F1品種3品種、‘CR歓呼’（（株）日本農林社）、‘福宝’（（株）トーホク）、
‘W1116’（（株）渡辺採種場）を用いた。材料植物の栽培は、第2章第1節共通の
方法にしたがって行い、開花後の花序を順次採取して供試した。

倍加半数体の作出

薬培養、不定胚からの再分化、発根、順化および倍数性の確認は第2章第4
節共通の方法にしたがって行った。自然倍加した二倍体は、第2章第1節共通
の方法と同様に4℃で30日間の春化処理後に1/5000ワグネルボットへ移植して
温室内で栽培した。抽苔開花後、第3章第1節第2項実験1で示した薬受粉によ
って採種した。半数体と確認された場合には、コルヒチン処理による染色体倍加
を行った。コルヒチン0.1%水溶液を浸みこませた綿球を半数体植物の茎頂部に
押し付けるようにしてのせて2日間処理した。処理後、綿球を取り除き、茎頂部を
水道水で洗浄した。その後、上記の自然倍加した二倍体と同様に春化処理によ
る開花誘導を行い、抽苔開花後に薬受粉によって採種した。各々の倍加した二
倍体の自殖によって得られたS1世代は、遺伝的にホモの完全固定系統と考えら
れ、ここでは倍加半数体系統と呼ぶ。

根こぶ病抵抗性検定

茨城県結城市的圃場の罹病したハクサイから罹病組織を採取して、-20℃で
保存した。冷凍保存した罹病組織から根こぶ病菌の休眠胞子を単離して供試し
た。根こぶ病抵抗性の検定は、Yoshikawa (1981) の方法に準じて行った。菌密
度を5×10³休眠胞子/mlに調製した懸濁液に、検定する幼苗の根を1分間浸
漬した。この幼苗を、根こぶ病菌休眠胞子を5×10⁶/g培養土の密度で接種し
た培養土を入れたポットに移植し、昼温 25〜30℃、夜温 22℃の温室内で 50 日間もしくは 69 日間栽培した。この株を掘り上げ根部の根こぶ形成の有無を調査することにより根こぶ病抵抗性を判定した。

圃場栽培と特性調査

得られた倍加半数体系統は、栃木県小山市大字出井 1900 番地の圃場で栽培し、系統選抜を実施した。

栽培方法：8 月下旬に温室内で 25 穴ビニポットに播種・育苗後、9 月中旬に圃場に定植して露地栽培を行った。栽培密度は、畝間 160 cm、床幅 100 cm、株間 40 cm の 2 条植え、条間 50 cm とした。施肥は元肥と追肥合計で、窒素：2.2 kg/a、リン酸：1.6 kg/a、カリ：1.8 kg/a を施用した。得られた倍加半数体系統ごとに 8 個体、2 反復で計 16 個体を定植した。

特性調査：11 月中旬から 12 月上旬に、特性調査を行った。調査項目は、草姿、草勢、葉色、球の大小、包皮、葉数、尻張、球内色黄色の濃さと広がり、球の締り具合および熟期である。それぞれの項目について 5 段階評価で特性調査をした。

組合せ能力検定

選抜した倍加半数体系統と従来の交雑育種法により育成した系統との間で試験交配を行って F1 種子を採種し、その F1 の特性を調査して組合せ能力を検定した。試験交配は、共同研究先の(株)渡辺採種場(宮城県、小牛田町)で実施した。1994 年 2 〜 6 月に、選抜した 5 系統の倍加半数体系統を父親(花粉親)とし、(株)渡辺採種場が従来法で育成した母本系統に 15 の交配組合せで人工交配して試験交配の F1 を採種した。試験交配により得られた F1 を、栃木県小山市の圃場において前述と同様の方法で、各 F1 につき 16 個体、3 反復で計 48 個体を栽培し、特性調査した。なお、調査項目には前述の項目の他に F1 系統内の揃い（斉一性）、球の重量および縁腐れやゴマ症といった生理障害の有無を
加えた。

地域適応性試験と品種の育成

選抜した F₁ 系統は、1995 年に北海道長沼町、福島県伊達町、茨城県八千代町および長野県長野原町の 4 箇所の委託農家において地域適応性試験を実施した。栽培の作型は現地の作型として、株間 40 cm、床幅 90 cm、二条千鳥植えとして各 F₁ 系統当り 50 個体を供試した。

結果

1991 年 10 月に 7 つの F₁ 品種を選定して薬培養を開始し、1993 年 7 月までに合計 740 の倍加半数体系統の種子を得た。1993 年 8～12 月に、これら全ての系統について、根こぶ病検定・圃場栽培・特性調査を行い、5 系統を選抜した。1994 年 8～12 月に試験交配によって得られた 15 系統の F₁ を、圃場で栽培して組合せ能力検定を行い、目的とする形質をもつ 2 つの F₁ 系統を選抜した。この 2 系統の父親系統は、ともに同一の系統 (AC4・729) であった。これらの地域適応性試験によって栽培特性を確認し、新品種育成を完了した。これらは 96 年 4 月に、F₁ 品種 ‘JT103’ と ‘JT107’ として日本たばこ産業 (株) から販売された（Figure 3-7）。

‘JT103’ および ‘JT107’ の特性

2 品種ともに、球内色黄色の濃さと広がりおよび根こぶ病抵抗性を付与することができたので、育種目標を達成した。それぞれの品種の特性は、以下の通りである。

JT103：播種後 70 日で球重が 2.5～3kgになる中早生品種である。葉色は濃く球内色も濃く広がる黄芯系で胴・尻張りの良い抱合砲弾型となる。根こぶ病抵抗性をもち、Ca 欠乏症にも強く、高冷地の夏播きと一般平坦地の秋播きに適する。
Figure 3.7. The new F₁ hybrid cultivars (‘JT103’: left and ‘JT107’: right) of Chinese cabbages were established by using the doubled haploid method.
JT107：播種後80日で球重が2.5〜3kgになる中生品種である。葉色は濃緑色で球内色が濃く広がる黄芯系で胴・尻張りの良い抱合砲弾型となる。根こぶ病抵抗性をもち、Ca欠乏症やゴマ症の生理障害に強く、一般平坦地の秋播きに適する。

第2項 園場選抜個体からの倍加半数体の育成

本項では、F₂世代で一度選抜した個体から倍加半数体を作出する方法(F₂DH法という)を試みた。また、得られた倍加半数体は、順化後の培養当植屋を直接園場で栽培して特性を調査して選抜した後に採種を行うことを試みた。ここでは、黄芯系で晩抽性のF₁品種の親系統の育成を目指し、根こぶ病抵抗性はもう一方の親系から付与することとした。

材料および方法

F₂個体の特性調査と選抜

ハクサイのF₁品種、‘幸村’（清水種苗（株））のF₂種子を採種し、このF₂の188個体を、前節と同様に圃場で栽培して特性を調査して、これらの中から優良個体を選抜した。選抜個体を温存し、栽培を継続して開花させ小胞子培養に供するため、球内の特性調査は、圃場で各株の結球の成長点を残して上部2/3を横に切りと取った後、縦に半分に切って球内の状態を調べた。また、切り取った下部の状態から尻張り（底部の張り具合）や、結球の縮まり状態を調査した。選抜個体を堀上げ、温室にて第2章第1節共通の方法と同様の培養土を3分の1程度入れた1/5000aワグネルポットへ移植した。

F₂選抜個体からの倍加半数体作出

抽苔開花した材料植物から花序を採取し、第2章第1節、共通の方法と同様の方法で小胞子培養した。小胞子培養により得られた不定胚からの再分化、発
根、順化および倍数性の確認は第2章第4節共通の方法にしたがって行った。なお、順化終了後に倍数性を調査して自然倍加した二倍体と確認した。また、一部の再分化植物を直接圃場で栽培し、特性を調査した。半数体の倍加処理と倍加半数体の開花誘導蕾および蕾受粉は、前項と同様にして倍加半数体系統の採種を行った。

倍加半数体系統の圃場栽培および特性調査

得られた倍加半数体系統は、栃木県小山市大字出井1900番地の圃場で前節と同様の方法で栽培し、特性を調査した。

結果

1995年6月に‘幸村’の自殖によるF₂種子を得た。‘幸村’F₂世代188個体を同年8月28日に播種、9月20日に圃場に定植、栽培して、11月1～14日に球内色の黄色が鮮やかな33個体を選抜した。温室で栽培中に枯死するものもあり、最終的にベト病に抵抗性で抽苔の遅い晩生2個体（YM-57とYM-121）を選抜した。これら2個体は、ともに1996年3月15日に抽苔が認められた。

選抜したF₂個体を材料植物とした小胞子培養は、1996年4月17日に‘YM-121’について、4月22日にYM-57について実施し、‘YM-121’からは84、‘YM-57’から400の不定胚を得た。7月末日までに順化終了した再分化個体については倍数性を調査し、自然倍加した二倍体を4号鉢に移植して栽培を続け、8月23日および9月4日に、それぞれ‘YM-57’の倍加半数体70個体と‘YM-121’由来13個体の合計83個体のF₂不定胚由来の再分化植物を直接圃場に定植した。同年11月～12月に球内色の黄色が濃く広がりが特に良い‘YM-57’の18個体を選抜、温室に移して栽培、採種を行って選抜倍加半数体F₂DHの自殖種子を得た。平行して、生育の遅れから再分化植物の直接定植に間に合わなかった未選抜倍加半数体F₂DHの自殖種子の採種を行った。
‘YM-57’から21個体と‘YM-121’から3個体の合計24個体を得た。これら一回予備選抜の倍加半数体系統(18)および未選抜の倍加半数体系統(24)の合計42系統は、1997年8月～12月に圃場で栽培し、特性を調査して、2回目の選抜を行い最終的に10系統にした。目標形質の球内色黄色の濃さと広がりは調査したすべての倍加半数体系統で認められた。

最終選抜した10系統のうち、6系統は共同研究先の柿沼育種センターにおいて品種育成母本として利用された。これら6系統中の「15・39」と命名した系統を、さらに系統選抜した育種母本の中からF₁品種の優良育種母本を見いだした。これを片親とし、通常の系統選抜により育成された根こぶ病抵抗性をもつ系統を交配母本とする、根こぶ病抵抗性のF₁品種‘ひろ黄’が2001年に柿沼育種センターより販売された。品種育成に利用された‘15・39’は、1996年に再分化植物を直接圃場栽培し、特性調査を行って選抜した倍加半数体個体のひとつである。

第3項　考察

薬培養を用いた半数体育種法を適用することで培養開始から約5年で品種を育成できた(Figure 3-8)。品種育成期間のうち、薬培養による固定に要した期間は2年であった。交雑育種によるF₁品種育成の場合には、母本の固定に6～7年、さらに組合せ検定、地域適応性試験を含めて10年以上を要するので、半数体育種を用いることで育種年限を半減できた。最終的に、2つの品種の雄親として用いられた倍加半数体系統は同一の系統であり、F₁品種から作出した倍加半数体740系統から1系統のみが利用されたことになり、その選抜効率は低いと考えられた。通常、ハクサイのF₁品種は自家不和合性を利用して採種されるが、選抜した系統は自家不和合性の程度が低く、自殖種子が混入する危険性があり、採種時には雌親系統としては利用できないので、採種効率が半減する問題点もあった。
F₂選抜個体を材料とする、小胞子培養を用いた半数体育種を実施し、培養開始から約5年で品種の育成を行うことができた（Figure 3-8）。半数体育種における培養材料として、選抜を加えたF₂個体の利用によって比較的少数の倍加半数体から、効率的に目的形質をもつ個体を選抜することができた。F₂世代で選抜した球内色が鮮やかな黄色の形質は、得られた倍加半数体の全てで観察されたことから、選抜の効果が示唆された。培養当代の植物を直接圃場で栽培した場合でも、球内色や、尻張りのような特定の形質においては、十分に選抜可能であることがわかった。しかし、圃場で選抜後に温室に移して採種を行う場合には、病気で枯死する個体も生じることから、1個体しかない当代植物を、種子を得る前に直接選抜することの危険性も示唆された。半数体育種を行う場合、F₁品種を直接培養材料にして育種を進めるよりも、F₂や、更にその後代で選抜した個体を出発材料とする方が、目的形質をもった倍加半数体を効率的に獲得する点では有利と考えられた。

一方、培養により得られた倍加半数体には遺伝的変異が生じる場合があることが知られており（Kumashiro and Oinuma 1985, Murigneux et al. 1993, 山岸 1998），後代を慎重に検定する必要性も指摘されている。今回選抜した‘15-39’は、少なくとも1997年の圃場栽培での特性調査時には、外観での形質の変異は観察されず良好に推定していたが、その後の育種時に後代での系統選抜を要したのは、培養変異による特定形質に関する僅かな系統内変異が生じたためと考えられる。育種における固定操作の年限短縮効果と、倍加半数体の作出効率を考慮して培養の材料を選択することで、より効率的な半数体育種が可能になると考えられる。
Figure 3-8. Comparison of the time courses of doubled haploid production and selection between the F₁ plants and F₂ plants.
第4章 総合考察

本章では、本研究を通じて明らかになった点を総合的に考察し、ハクサイの半数体育種の現状と問題点を明らかにして本研究の育種学的成果について言及し今後の展望を論じる。

倍加半数体は全体ゲノムについて同型接合となるので、優劣性遺伝子はともにホモ化し表現型として現れ形質分離が見られないので、育種上の利用価値は極めて高い。薬培養によりチョウセンアサガオの半数体作出が可能であることがGuha and Maheshwari (1964, 1966) により見出された。その後、現在までの約半世紀の間に、半数体作出技術は多数の作物において開発され、タバコ、ナタネ、イネ、コムギ等で実用化されて倍加半数体を利用した新品種の育成も行われている。

アブラナ属（Brassica）植物では、KameyaとHinata (1970) は、最初の半数体作出の報告をした。その後、数多くの研究者らによって半数体作出に関する研究と報告がなされ、その培養技術は著しい発展を遂げてきた。アブラナ属（Brassica）植物における薬・小胞子培養の大きな特徴は、培養初期の高温処理が有効であること、高濃度のショ糖、特定アミノ酸としてL-グルタミンやL-セリンの培地への添加が有効であることがあげられる。また、高温処理によって、小胞子が成熟花粉への発達から逸脱し、不定胚形成へ向かう引き金となることが知られている（Hamaoka et al. 1991b; Telmer et al. 1993; Custer et al. 1994）。また、高濃度のショ糖は炭素源として作用するだけではなく、高浸透圧剤としても作用していることやL-グルタミンとL-セリンは不定胚の生育過程には必須であることが知られている(Dunwell and Thuring 1985, 浜岡ら 1991c)。このように、薬・小胞子培養における不定胚の発生機構が、徐々に明らかにされつつあった。

一方、このような基本的培地組成に加えて、不定胚形成率を向上させるための

- 81 -
さらなる培地への添加物の検討、報告されてきた。培地へのコルヒチンの添加（Zaki and Dickinson 1991）や硝酸銀の添加（Dias 1999）がその一例である。このような研究は主に、B. napus と B. oleracea を対象として行われ、ハクサイでは薬・小胞子培養に関する報告は少なかった。しかし、倍加半数体の利用価値が高いことは広く認識されており、日本でも各種の研究機関や種苗会社で薬・小胞子培養を用いたハクサイの育種が行われてきた（湊 1989）。半数体育種を实用化する際の最大の問題は、倍加半数体の作出効率が低いということである。国内で栽培されているハクサイ品種の薬・小胞子培養における不定胚形成率が一般に低く、品種・系統間差異が存在し、不定胚形成が全く認められない品種が多数存在することが報告されている（Kuginuki et al. 1997）。この品種間差異を克服できれば半数体育種の実用性が高まると考えられる。

本研究において、培養前の蕾もしくは花序の低温前処理が不定胚形成を促進し、その効果は花序全体に対するより蕾処理の方が高いことが明らかになった。また、蕾の低温処理は材料蕾の保存にも利用できるので、育種作業効率を高め、さらに実用性を上げるものと考えられた（第2章第1節）。さらに、蕾の低温処理は小胞子から不定胚形成に向かうための形態形成トリガーの一つになっている可能性が示された（第2章第2節）。一方、選抜した1個体を材料植物にして倍加半数体の作出を想定した場合、1個体から1000蕾程度が培養材料として利用可能であること、材料植物の齢については、主枝の開花始めから2ヶ月以上経過すると、不定胚形成率が低下することを見出した。実際に半数体育種を行う際は、これらを考慮して半数体育種の実行計画を策定するのが望ましい（第2章第3節）。また、薬培養と小胞子培養を比較した場合、小胞子培養の方が作業性の点で優れる上に、倍加半数体の作出過程で生じる自然倍加の発生頻度も高く、人为的な倍加処理を省略できること、小胞子培養においても品種・系統により自然倍加の頻度が異なることを明らかにした（第2章第4節）。さらに、倍加半数体
を開花期の異なる親系統間との交配を可能にするための技術として、花粉の保存方法を確立しました（第3章第1節）。

最後に、これらの技術を総合し、半数体育種法によるハクサイ新品種の育種年限の短縮法の確立を計画した（第3章第2節）。ここでは、被被害が甚大で生産上の大きな問題となっている根こぶ病に対する抵抗性と、消費・加工の観点では球内色の黄色が濃く、広がりを見せめる黄芯系形質に着目した。薬培養を用いたF1植物からの倍加半数体作出と、小胞子培養を用いたF2選抜個体からの倍加半数体の作出を実践し、それぞれから優良倍加半数体系系を選抜した。また、再分化植物当代を圃場で栽培した場合でも球内色や一部の結球形態については十分に選抜が可能であることを見出した。半数体育種を行う場合には、F1品種を培養材料にして育種を進めるよりも、F2以降の分離後代で1回弱く選抜した個体を出発材料とする方が、目的形質をもつ倍加半数体の効率的な獲得ができると考えられた。実際には、育種の目的と状況に合わせ、固定操作の年限短縮効果と倍加半数体の作出効率を考え合わせて培養材料を選択することで効率的な半数体育種が可能になると考えられる。さらに、本研究で明らかになった小胞子培養条件下では、国内において販売・栽培されているF1品種の中にも、非常に高い不定胚形成能を示す‘春楽’や‘北洋’といった品種が存在することを見出した（第2章第4節）。また、不定胚形成が非常に低い品種は存在するものの、不定胚形成が全く認められない品種はなかった。

このような本研究の結果は、不定胚形成効率の低さと品種間差が存在するという問題に対して、材料の低温前処理は品種・系統にかかわらず、不定胚形成率を向上させると考えられる。これまでに報告されている不定胚形成率向上のための改良方法と組み合わせて培養を行えば、不定胚形成のより一層の向上を期待できる。低温前処理は実際に半数体育種を実践する中では、材料の保存、すなわち培養作業の標準化と材料の損失の低減効果により効率性を高めること
ができますと考えられる。花粉保存技術を利用して、開花期の異なる倍加半数体間や、系統選抜個体との間での試験交配が可能になることにより、育種年限を著しく短縮できると考えられた。そして、育種計画に基づいて倍加半数体作出技術を実践し、短期間で球内色黄色の根こぶ病抵抗性の品種を育成・上市できたので、当研究によってハクサイ半数体育種を改善・効率化できることが実証できたと考えられる。

本研究で実践・確立してきたハクサイの小胞子培養による倍加半数体植物作出の過程およびその概要は、以下に示す通りである。

(1) 小胞子培養による不定胚形成：最も重要なステップである不定胚の獲得は、薬培養よりも作業効率の高い小胞子培養による。この際、蕾を液体培地に置床し4℃で低温前処理することで不定胚形成は促進される。前処理の期間は3週間程度まで有効なので、材料蕾の保存にも利用可能である（第2章第1節）。

(2) 不定胚からの再分化：魚雷型胚および子葉型胚にまでに生育した不定胚は植物生長調節剤を含む培地へ移植して再分化を促す。この際、培地の固化剤が1.0%ゲランガムから0.8%寒天へと異なる2種類の培地へ継代移植する、2段階法を用いる（第2章第4節）。この方法による再分化率は概ね70%である。

(3) 発根：再分化したシュート（幼苗）は植物調整物質を含まないB5培地に移植して発根を促す（第2章）ことで、90%以上が発根して培養幼植物体となる。再分化培地において、不定胚からの再分化と同時に発根する場合もあるが、順化の際に、根の基部と植物体上部を切断してしまう場合があるので、再分化したシュート（幼苗）部分を切り取って、発根培地へ移植し、発根を誘導するのが確実である。

(4) 順化：発根した幼植物体は、培地の寒天をよく洗い除いた後に培養土を入れたポットに移植し、相対湿度90%以上に制御した温室中に2週間置いて順化処理（第2章第4節）を行うことで90%以上が順化された植物体が得られる。
(5) 倍数性の確認と倍加処理：順化終了後の植物体は、半数体と自然倍加した二倍体や四倍体が混在するので、葉表皮の孔辺細胞の葉緑体数を調査して倍数性を確認し、半数体はコルヒチン処理により倍加する。自然倍加の頻度は、品種・系統により異なるが、概ね50%以上（第2章）である。コルヒチンによる倍加率も50%程度であり、自然倍加の発生頻度は倍加半数体の作出効率に大きく影響する。

(6) 採種：自然倍加および倍加処理した二倍体は、低温処理により開花を誘導し、自殖（蕾受粉）によって採種を行う（第3章第1節）。しかし、何らかの理由で自殖種子が得られない場合もあり、採種の成功率は90%程度である。倍加半数体間や系統育種により選抜された個体との間で試験交配を行う場合には、花粉保存技術（第3章第1節）を利用して採種を行う。

以上のような段階を経てようやく倍加半数体を獲得することができる。仮に自然倍加率を50%とした場合でも、不定胚からの倍加半数体獲得効率は40%程度になる。従って、薬・小胞子培養による不定胚形成率の向上が最も重要であるが、倍加半数体作出の各ステップの効率を高めることが半数体育種の成否を握ることになる。

本研究で確立した上述のハクサイの半数体育種技術は実用レベルに達していることが、新品種育成によって実証された。しかし、この技術を、広くハクサイの育種に利用する上では小胞子培養における不定胚形成率の品種・系統間差異が大きな問題となる。多くの品種で多数の倍加半数体を獲得するためには、不定胚形成率をさらに向上させる工夫が必要である。その一つの試みとして、ハクサイの南方型の捲心群の中から見出されている不定胚形成能力の高い系統（Sato et al. 1989a）から、日本型のハクサイに高い不定胚形成能力を導入する試みがなされ（kuginuki et al. 1997）、「ハクサイ中間母本農7号」が育成されている（釘貫ら 2001）。この高不定胚形成能母本を利用する場合には、品種育成の前進
程でこの母本との交配が必要となるので、育種年限の延長になる。しかし、今後ハクサイにおける半数体育種が広く普及し、日本型ハクサイの中にも存在している不定胚形成能力の高い系統が選抜されて、その形質をエリート品種に集積（遺伝子のピラミダイズ）していくことが可能ならば、倍加半数体作出効率の向上がさらに期待できる。

一方、培養条件や培地組成に関する新たな報告もある。アブラナ属（Brassica）植物のナタネの小胞子培養における材料蕾の最適な発達段階は一細胞期後期から二細胞期前期とされてきたが、二細胞期後期の小胞子の培養においても通常よりも高い41℃、1～2時間の高温処理によって、不定胚が形成が促進されることが報告されている（Simmonds and Keller 1999）。さらにナタネでは、培地中の高濃度のショ糖は、高濃度（25%）のポリエチレングリコール（PEG）に置き換えられることが可能であると報告されている（Ilic-Grubor et al. 1998）。PEG培地で培養して得られた不定胚は、ショ糖培地で形成した不定胚よりもin vivoで発達中の受精胚に形態が酷似しており、その不定胚（PEG）からの再分化率も高いことが報告されている（Ferrie and Keller 2007）。このような不定胚形成に影響する培養条件と培地組成の発見や培養技術の進展は、今後の半数体育種の効率化と普及に大きく貢献すると期待される。

また、選抜した倍加半数体系統の遺伝子型の固定度が不完全であった（第3章第2節）理由としては、培養過程で何らかのソマクローン変異が生じたことによるのではないかと考えられる。これについては、従来より指摘されている。遺伝的に純系であるはずの倍加半数体の中で変異が生じる場合があるということである。これは、培養変異が主因と考えられる。変異を回避したり低減したりするためには、培養期間をできるだけ短縮する改良が考えられるが、現段階では決定的な解決策はないので、原因の究明と解決は残された課題である。

根こぶ病抵抗性に関しては、半数体育種により短期間で抵抗性品種が育成さ
れても,抵抗性品種の罹病化という問題が残されている.根こぶ病抵抗性遺伝子は4つの遺伝子座（Crr1, Crr2, Crr3およびCRb）が同定,マッピングされており,これらCR遺伝子に連鎖したDNAマークーも単離されてきている（Hirai 2006）.半数体育種法により,これら有用遺伝子のピラミダイズが行われ,罹病化に対応した抵抗性マルチラインの新品種の育成が期待される.しかし,根こぶ病のレース分化は今後も続くものと考えられることから,ダイコンの根こぶ病抵抗性のような,これまでとは異なるメカニズムによる抵抗性の発見と,その育種的利用が期待される.

ハクサイ育種における倍加半数体の利用は,育種目標に対して迅速な品種育成を可能とする.病原菌のレース分化への迅速な対応のみならず,ハクサイ生産の低コスト化に貢献するセル形成苗向けや晩抽性品種,さらには消費者の嗜好の急速な変化といった多くの育種目標に対して,タイムリーな品種育成が期待できる.
ハクサイの半数体育種法の効率化を目的として，薬および小胞子培養における倍加半数体作出の効率向上や，育種を行う上で必要となる成熟花粉の保存技術について検討を行った．さらに，半数体育種法の実用性を検証するため，実際に倍加半数体の作出と品種の育成を行った．

第1章

ハクサイは，1875年に日本に本格導入されて以来，我が国の気候風土に適合するように品種改良され，現在では最も重要な野菜のひとつになっている．しかし生産現場では，育成された耐病性品種を犯す新しいレースの根こぶ病菌によって壊滅的な被害を受けることがある．また，消費者の嗜好は急速に変化しており，嗜好性の高い品種の育成も必要に迫っているのが現状である．したがって，防除が困難な土壌伝染性病害である根こぶ病に対する抵抗性とともに，嗜好性の高い品種の早期育成技術の開発が求められている．

ハクサイの品種育成は，固定種に始まったが，雑種強勢で斉一性が高く，育成者権の保護が容易な一代雑種（F1）品種が主流となり，現在では市販品種のほとんどがF1品種になっている．通常の交雑育種によるF1品種の育成では，10年以上の長い年月を要し，そのうち7～8年（7～8世代）はF1品種の両親となる純系の育成（固定）に費やされる．これに対して半数体育種法では，純系の育成が1世代で完了するので，育種年限の大幅な短縮が可能になる．

アブラナ属（Brassica）植物では，ナタネやブロッコリーで半数体育種が行われている．ハクサイでも薬培養を用いた半数体育種法による品種育成が報告された経緯はあるが，不定胚形成率が低く，品種や系統によっては不定胚が得られないので，主たる育種法にはなっていない．そのため，ハクサイの半数体育種技術を
実用化できる水準に改良し、実際に品種を育成することを目指した。

第2章

ハクサイの小胞子培養における、不定胚形成の促進法を検討した。不定胚形成率は、培養前の花序あるいは蕾を4℃の低温下で3～10日間処理すると向上し、その効果は蕾処理の方が花序処理より高かった。また、蕾の低温前処理は、7～20日間の処理でも不定胚形成率の向上効果が認められた。低温前処理が不定胚形成の向上効果をもたらすメカニズムを解明するため、蕾の低温前処理中における小胞子の発達を経時的に観察した。その結果、処理前の小胞子は一細胞期後期であったが、徐々に、不均等サイズ二分裂の結果生じた大きさの異なる生殖細胞と栄養細胞からなる二細胞期の小胞子が増加し、低温処理期間中にゆっくりと成熟花粉に発達すると推定された。その中で、わずかではあるが、不定胚形成に進行すると推定される、均等な大きさの2つの核からなる二細胞期の小胞子も観察された。すなわち、低温処理によりごく一部の小胞子が不定胚形成に向かうことが、不定胚形成率が向上する原因のひとつと考えられた。

次に、圃場で特性検定した後に選抜した1個体から、できるだけ多くの倍加半数体を獲得することを想定し、1個体から獲得できる不定胚数の推定を試みた。品種‘W1116’の1個体を温室で栽培し、開花の開始から採集可能な材料蕾をすべて用いて小胞子培養を行った。その結果、開花始めから143日間に27回にわたって花序を採取できた。それらの一部の培養によって得られた不定胚数から、この1個体から970個の不定胚を獲得できると推定された。また不定胚発生率は、開花始めから2ヶ月間は比較的高く、それを越えると低くなることが示唆された。

半数体は、人为的に倍加した後に育種に利用するが、倍加処理には労力と時間がかかるうえ、その成功率は50％程度と低い。しかし、薬・小胞子培養により得られる再分化植物体には半数体の他、自然倍加した二倍体や四倍体が含ま

- 89 -
これらのうち二倍体は、倍加処理なしで育種に利用できるので、その出現率が高いほど有利である。そこで、培養方法の違いが再分化植物の自然倍加頻度に与える影響を調査した。倍数性は、孔辺細胞あたりの葉緑体数を指標とした。品種‘W1116’と‘信玄’を用いて薬培養と小胞子培養を比べると、蕾あたりの再分化植物体の作出効率は小胞子培養のほうが薬培養より高く、自然倍加した二倍体の出現率は、小胞子培養由来では60％以上であったのに対し、薬培養由来では20～30％であった。さらに、異なるハクサイ品種・系統の小胞子培養を行い、再分化植物体の作出と倍数性を調査した結果、二倍体の出現頻度は38～85％であった。これらの結果から、自然倍加の発生頻度は培養条件と材料植物の遺伝子型双方の影響を受けていていることが示唆された。また、自然倍加の発生時期を推定するため、小胞子培養によって得られた不定胚の倍数性をフローサイトメーターにより調査した結果、70％が二倍性で30％が半数性であった。倍数性キメラは存在しなかった。このことから、染色体の自然倍加は不定胚形成の初期段階に生じていることが示唆された。

第3章

倍加半数体を用いた品種育成では、再分化植物の生育は斉一ではなく開花期も個体ごとに異なるので、これらの個体間、あるいは従来育種により系統選抜を行った個体との間で開花期が一致せず、試験交配できないという問題が生じる。しかし、花粉の保存技術があれば、育種や試験交配のF1種子の採種において開花期の異なる系統間の交配が可能になる。そこで、花粉の保存方法を検討した。始めに、保存した花粉の活性をin vitroでの発芽能によって評価することとして、in vitroでの花粉発芽条件を検討した。その結果、花粉発芽培地の最適pHは8.0であった。また、花粉に培地を滴下する前に、相対湿度（RH）66％で5時間処理する湿気前処理がin vitro花粉発芽の安定化に有効であった。これら
を組み合わせて*in vitro* 花粉発芽による花粉活性評価法を確立した。次に、花粉の保存期間中における湿度と温度について検討した結果、発芽能力の維持には15%RHが最適であり、15℃〜20℃では1週間、5℃では6週間、-20℃では1年程度花粉を保存できることがわかった。また、-20℃で1年間保存した花粉を用いた交配実験の結果、新鮮花粉と同様の受精能力と自家不和合性能力を維持していることがわかった。

次に、半数体育種の実用化、すなわち倍加半数体を用いた品種育成について実証的に検討した。根こぶ病抵抗性を持つ7つのF1品種あるいは試作系統の薬培養を行い、合計740の倍加半数体の種子を得た。これらについて、根こぶ病抵抗性検定と、圃場栽培での特性調査を行い、根こぶ病抵抗性で、かつ球内色が濃黄色で嗜好性の高い優良倍加半数体系統を5系統選抜した。これらを従来の交雑育種法により育成した3系統の母本と交配し、組合わせ能力検定試験によって目的の形質を持つ2組合せのF1を選抜した。これらは、地域適応性試験を経てF1品種（'JT103'と'JT107'）として販売された。次に半数体育種法の効率を高めるために、F2選抜個体を材料とする小胞子培養による倍加半数体の作出を行った。F1品種の自殖後代F2植物188個体を圃場で栽培して特性検定を行い、優良個体を選抜した。その後、選抜個体を掘り上げて温室内で栽培し、翌年4月に抽苔開花した個体から蕾を採取して小胞子培養による倍加半数体を作出した。一部の倍加半数体は、順化終了後の再分化植物当代を直接圃場に定植して栽培し、検定・選抜した。F1品種を材料にした場合よりも少ないF2倍加半数体107系統の中から優良個体を10個体選抜した。それらの中から系統選抜した中に、優良育種母本を見いだした。そして、この育種母本を利用して球内色が鮮やかで根こぶ病抵抗性のF1品種‘ひろ黄’が育成、市販されるに至った。
第4章

一連の倍加半数体作出技術を用いて実際に品種が育成され、上市されたことにより、本研究によって確立したハクサイの半数体育種技術は実用レベルに達していることを実証できた。しかし、不定胚形成における品種間差、培養変異、また根こぶ病抵抗性品種の罹病化といった問題は依然として残されており、今後、新たな抵抗性素材の探索と小胞子培養技術の進展による育種への利用が期待される。
Studies on haploid breeding of Chinese cabbage

(\textit{Brassica rapa} subsp. \textit{pekinensis})

Seiki Sato

Summary

To improve the efficiency of haploid breeding in Chinese cabbage (\textit{Brassica rapa} subsp. \textit{pekinensis}), conditions for embryo formation and for doubled haploid (DH) production by anther culture and microspore culture were investigated. Furthermore, conditions for pollen preservation to enable crossing between DHs and other breeding materials flowering at different times were assessed. Then, new F\textsubscript{1} cultivars were bred using the method described herein to demonstrate that this method is applicable for commercial breeding of Chinese cabbage.

Chapter 1

Chinese cabbage has been bred for adaptation to Japan's climate since it was first introduced to Japan in 1875. It remains an important vegetable in Japan. In Japan, clubroot disease is a damaging disease of Chinese cabbage. Although clubroot-resistant (CR) cultivars have been bred and distributed in Japan, most have now become susceptible in many cultivation areas because of race differentiation of pathogens. Therefore, clubroot resistance is an
indispensable trait to introduce into commercial breeding of Chinese cabbage. Moreover, consumer tastes vary. Therefore, to cope with many demands of growers for CR and various consumer tastes, it is necessary to develop new early breeding methods.

Although purebred varieties were produced many years ago, almost all contemporary cultivars of Chinese cabbage are F₁ hybrids in Japan. The advantages of F₁ hybrids are heterosis and ease of protection of exclusive rights.

In conventional crossbreeding, raising a new cultivar requires more than 10 years, including 7–8 years for fixation of parent lines. In contrast, using haploid breeding methods, the term can be shortened dramatically: the pure line is producible in one generation within a single year.

In Brassica crops, haploid breeding has been performed in rape seed and broccoli. In Chinese cabbage, although some reports in the literature describe haploid breeding, haploid breeding has not become a standard method of breeding because the efficiency of embryo formation is generally very low; for some cultivars and lines, embryos are never obtained.

This study was undertaken to improve haploid breeding methods to a level that is practical in commercial breeding and to raise commercial varieties using the haploid breeding method improved through this study.
Chapter 2

The effect of low-temperature pretreatment of buds or inflorescence on the efficiency of embryogenesis in microspore culture was examined. Incubation of the buds or inflorescence at 4°C for 3–10 days before the culture of microspores improved the efficiency of microspore embryogenesis. Pretreatment of flower buds was more effective than that of the inflorescence. Prolonged pretreatment up to 20 days promoted embryo formation. Microspores in the buds were observed using a microscope to determine the developmental stage before and after pretreatment. All microspores were at the late unicellular stage before pretreatment. The percentage of microspores at the late unicellular stage decreased during pretreatment, whereas the percentage of bicellular stage microspores having two nuclei of unequal size increased. A few bicellular stage microspores with equal size nuclei—the first step of microspore embryogenesis—were observed after the pretreatment, which suggested that the low-temperature treatment of buds or inflorescence would have a small portion of microspores in the buds divide evenly, thereby improving the efficiency of microspore embryogenesis.

The chance to obtain promising DHs with target traits would be higher if an individual selected on target traits in the field were used as the starting material of a microspore culture or anther culture. However, in this case, material plants would be restricted to one plant selected. The more microspores that are cultured, the higher
the chance of obtaining promising DHs. Therefore, embryos were taken from one individual to the greatest extent possible to estimate how many DHs would be obtainable from an individual. Based on the results, it was estimated that about 970 embryos would be obtainable from one material plant of cv. ‘W1116’. Although the efficiency of embryogenesis was high for 2 months from anthesis, it decreased thereafter.

Haploids, diploids, and occasionally polyploids regenerate spontaneously in anther culture or microspore culture. The ploidy of Chinese cabbage plants regenerated from cultured anthers or microspores was examined. In two cultivars, ‘W1116’ and ‘Shingen’, the percentages of diploids in plants derived from the microspore culture were greater than 60%, whereas those from the anther culture were 20–30%. In 12 other genotypes, the percentages of diploids in plants derived from the microspore culture were 38–85%. Consequently, the frequency of spontaneous chromosome doubling was shown to be affected by both the genetic background and culture conditions.

The ploidy of torpedo-shaped stage embryos obtained using the microspore cultures was determined by measuring the amount of DNA in each nucleus using flow cytometry. About 70% of the embryos were diploids; the rest were haploids. No ploidy chimera was observed. These results suggest that spontaneous chromosome doubling might occur in the first cell division on the way to microspore embryogenesis.
Chapter 3

The pollen preservation makes it easy to cross varieties with different flowering times in crop breeding and hybrid seed production. A simple and reliable method for evaluating the viability of Chinese cabbage pollen was established in which the in vitro germination rate of pollen was adopted as the index of pollen grain viability. Pollen grains were preincubated at 20°C for 5 hr in an atmosphere in which the relative humidity (RH) was fixed at 66%. Then they were cultured for 16 hr at 25°C in liquid Kwack's medium (1964) supplemented with 20% sucrose, the pH of which was adjusted to 8.0. The germination rate of pollen was improved and stabilized through preincubation and the use of pH 8.0 medium. More than 90% of the freshly harvested pollen grains of Chinese cabbage germinated constantly in this condition.

The conditions of the pollen preservation were investigated. Undehisced anthers were collected from flowers at anthesis and dehydrated using incubation at 20°C for 16–24 hr in an atmosphere in which the RH was fixed at 15%. Low humidity (RH15%) was more effective for pollen preservation than high humidity (RH66%). The effects of temperature during preservation in RH15% were examined. Pollen of Chinese cabbage proved to remain viable for about 10 days at 20°C, about 6 wk at 5°C, and for one year or more at -20°C. The pollen grains preserved at -20°C for one year proved to be as efficient for seed setting as fresh pollen. Moreover, the pollen preserved for one year proved to maintain the nature of self-incompatibility as well
as fresh pollen did. Most seeds obtained using one-year-preserved pollen germinated normally. Consequently, pollen preservation techniques were established to bridge the gap of the flowering times of various breeding materials.

New F₁ hybrid cultivars of Chinese cabbage were developed using the haploid breeding method established in this study. The major target traits of breeding were clubroot resistance (CR) and wide yellow core of the head. We performed two approaches using different starting materials of anther or microspore cultures.

In the first approach, seven commercial F₁ hybrid cultivars having target traits were used as the material plants of anther culture, yielding 740 DH lines. They were planted in the field and selected for target traits and other agronomical traits. Five DH lines combining CR, wide yellow core of the head and good agronomical traits were selected as prospective paternal lines. Then they were examined for their combinatory capabilities by crossing with three prospective maternal lines that had been bred using the conventional method. Two combinations were selected and the F₁ hybrid lines of these combinations were tested for their local adaptability. Subsequently, both were released as new varieties: ‘JT103’ and ‘JT107’.

In the second approach, F₂ seeds of a commercial variety ‘Yukimura’ were obtained initially by selfing. Then 188 F₂ plants were planted in the field and selected for target traits and other agronomical traits. In all, 33 individuals were selected and transplanted to pots and grown in a greenhouse. Among them, two
individuals which showed resistance to Downey mildew and late bolting character were finally selected. They were used as the starting materials of microspore cultures. Thereby, 107 DHs were obtained. The DHs or their S_1 progeny were planted in the field for selection; then 10 elite lines were selected as prospective paternal lines. They were examined for their combining abilities by crossing with prospective maternal lines bred using conventional methods. One combination was selected and the F1 hybrid line was released as a new variety: ‘Hiroki’.

Chapter 4

Haploid breeding methods of Chinese cabbage was greatly improved by results obtained through this study. This method was demonstrated as practical for commercial breeding of Chinese cabbage. Although some problems—such as great differences in the frequency of embryo formation among cultivars and mutation during culture and breakdown of CR traits—remain as issues to be resolved in the future, use of the haploid-breeding method described herein would accelerate breeding of Chinese cabbage.
謝辞

本論文を取りまとめにあたり、終始懇切な御指導ご鞭撻を賜りました大阪府立大学大学院生命環境科学研究科教授 小田雅行博士には謹んで感謝の意を表します。本論文の御校閲と御指導を頂いた、大阪府立大学大学院生命環境科学研究科教授 阿部一博博士、同教授 大門弘幸博士、同准教授 森川利信博士に謹んで感謝の意を表します。

本研究の遂行と論文の取りまとめに際し、終始懇切な御指導と御鞭撻を頂いた、農研機構 近畿中国四国農業研究センター 萩森学博士、鹿児島大学農学部生物生産学科教授 岩井純夫博士、日本たばこ産業株式会社 植物イノベーションセンター 加藤紀夫博士には謹んで感謝いたします。研究の遂行全般にあたり、多大なご協力を頂いた阿部とき子氏には心より感謝いたします。品種育成にあたり御指導とご協力を頂いた、東北農業研究センター 由比進博士、株式会社渡辺採種場 津野勲氏、柿沼育種センター 柿沼博昭氏（故人）、日本たばこ産業株式会社植物開発研究所 後藤房雄氏、酒主光枝氏、斉藤秀章氏に謹んで感謝いたします。長年に渡り、アブラナ科を中心とした多くの植物種において、研究に従事させて頂いた中で、御指導と御教示を頂いた日本たばこ産業株式会社および各種研究機関の多くの方々に対し、心より感謝の意を表します。

本論文執筆中にたえず激励してくれた妻 千秋と子供達 久未、寛泰に感謝します。

Doré, C. and L. Boulidard. 1988. Production of androgenetic plants by in vitro anther culture of sauerkraut cabbage (Brassica oleracea L. ssp. capitata) and behaviour of double haploid lines (DH) and F1 hybrids. Agronomie. 8: 851-862.

浜岡陽・佐藤正紀・岩井純夫. 1991c. ハクサイ花粉培養時ににおける培地中の糖, アミノ酸, 無機塩類が花粉の生存, 胚形成に及ぼす影響. 植物組織培養学会要旨. 12: 222.

角谷直人・神代隆. 1985. タバコの半数体育種. 育種学最近の進歩 第27集. (日本育種学会編) 啓学出版, p. 3-12.

釘貫靖久・塚崎 光・飛騨健一・吉川 宏昭・由比 進・中村 幸司・西畑 秀次・鈴木 徹. 2001. 小胞子からの植物体再分化能の高い中間母本系統’はくさい中間母本農7号’の育成. 育学研. 3(別2): 160.

松本悦夫・長瀬嘉迪．1984．Brassica属野菜の薬培養に関する研究．1．
ハクサイの薬からの胚様体形成．雑誌．34(別1):32-33．

湊莞爾・蔭山節雄・福島雅明．1988．球内橙黄色の新型ハクサイT608
号の育成経過および特性．園芸．57．別1:176-177．

湊莞爾．1989．‘オレンジクイン’の育成経過と特性．農耕と園芸別冊．バイ
オホルティ．2:17-19．

水島宇三郎・角田重三郎．1969．アブラナ属栽培種の起源について．農業
園芸．44:1347-1352．

and morphological evaluation of doubled haploid lines in
maize. 1. Homogeneity with DH lines. Theor. Appl. Genet. 86:
837-842.

Study on the haploid method of breeding of tobacco. SABRAO J.

Ockendon, D. J. 1974. The value of stored pollen in incompatibility
studies in Brassica. Incompatibility Newsletter No.4: 17-19.

Ockendon, D. J. 1984. Anther culture in Brussels sprouts (Brassica
oleracea var. germmifera). I. Embryo yields and plant

haploid lines of burley tobacco varieties. Japan. J. Breed. 24:
211-216.

Orton, T. J. and M. A. Brower. 1985. Segregation of genetic marker
among plants regenerated from cultured anthers of broccoli

